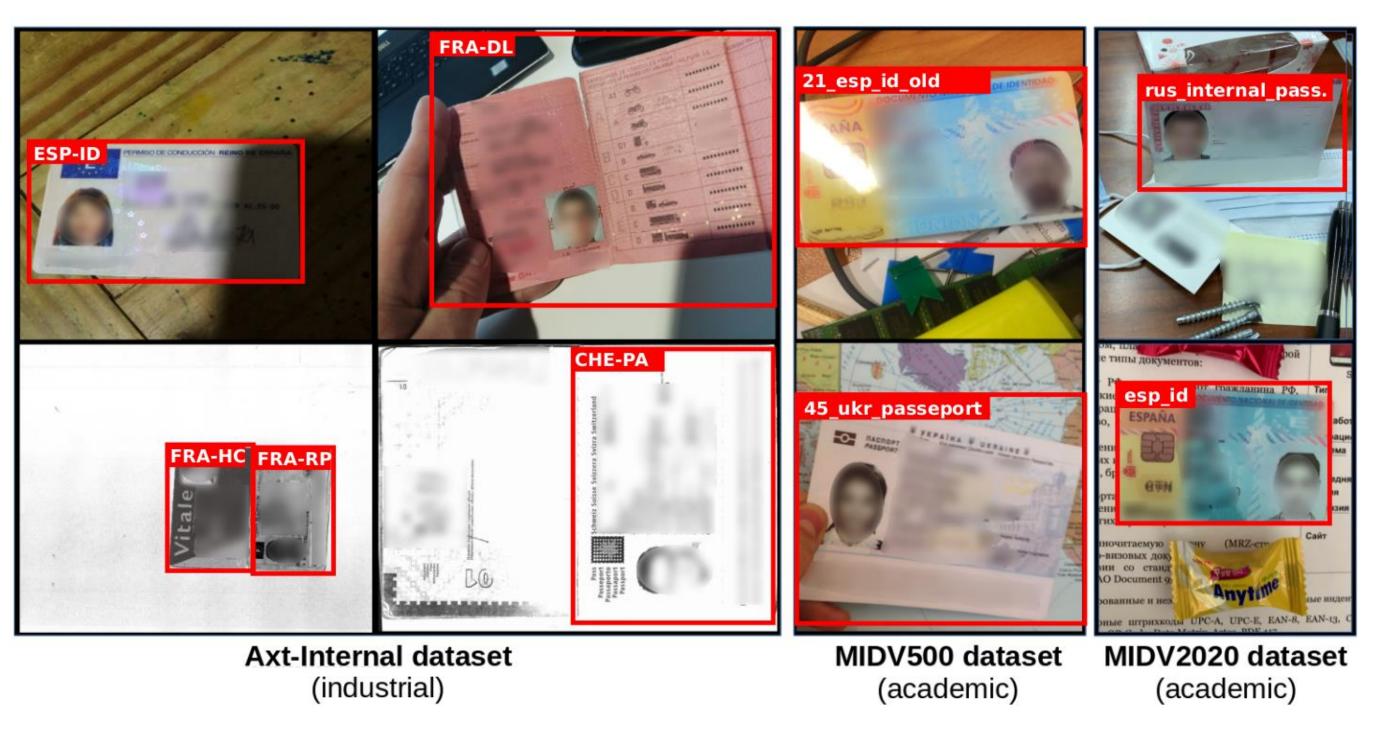
One-Shot Classification of ID Documents

Florian Arrestier, Guillaume Chiron and Ahmad Montaser Awal


AriadNEXT - Cesson-Sévigné, France

{florian.arrestier, guillaume.chiron, montaser.awal}@ariadnext.com

Objectives and Challenges

- Localize and **classify** ID documents in various capture conditions (smartphone, scans, webcam)
- Support new documents with only a few samples available.
- Support 1000+ identity document models.
- Diversity of document models and background.

Impact of training loss

 Using different losses for training reveals that training a network for pure classification using the Softmax loss yields better results than using metric learning techniques inherited from the face classification problem.

	${\bf AXT\text{-}Internal}$	Midv2020				
Losses	TestSet	scan upright	scan rotated	photo	clip	Average (\pm std)
ArcFace	99.23	92.50	71.40	77.80	76.13	$83.41 (\pm 11.85)$
CosFace	99.34	88.00	76.90	75.50	78.98	$83.74 (\pm 9.99)$
Triplet	99.36	83.50	65.30	71.50	71.47	$78.23 \ (\pm \ 13.53)$
Triplet-R	97.23	100.00	95.40	91.90	92.96	$95.50 (\pm 3.27)$
Softmax*	97.57	99.90	98.30	95.90	93.71	$97.08 (\pm 2.42)$
Softmax	99.46	100.00	100.00	98.50	97.55	99.10 (\pm 1.06)

Table 2: One-shot classification accuracy for different training losses. For all the losses, network is trained on the AXT-Internal dataset. *network trained from scratch.

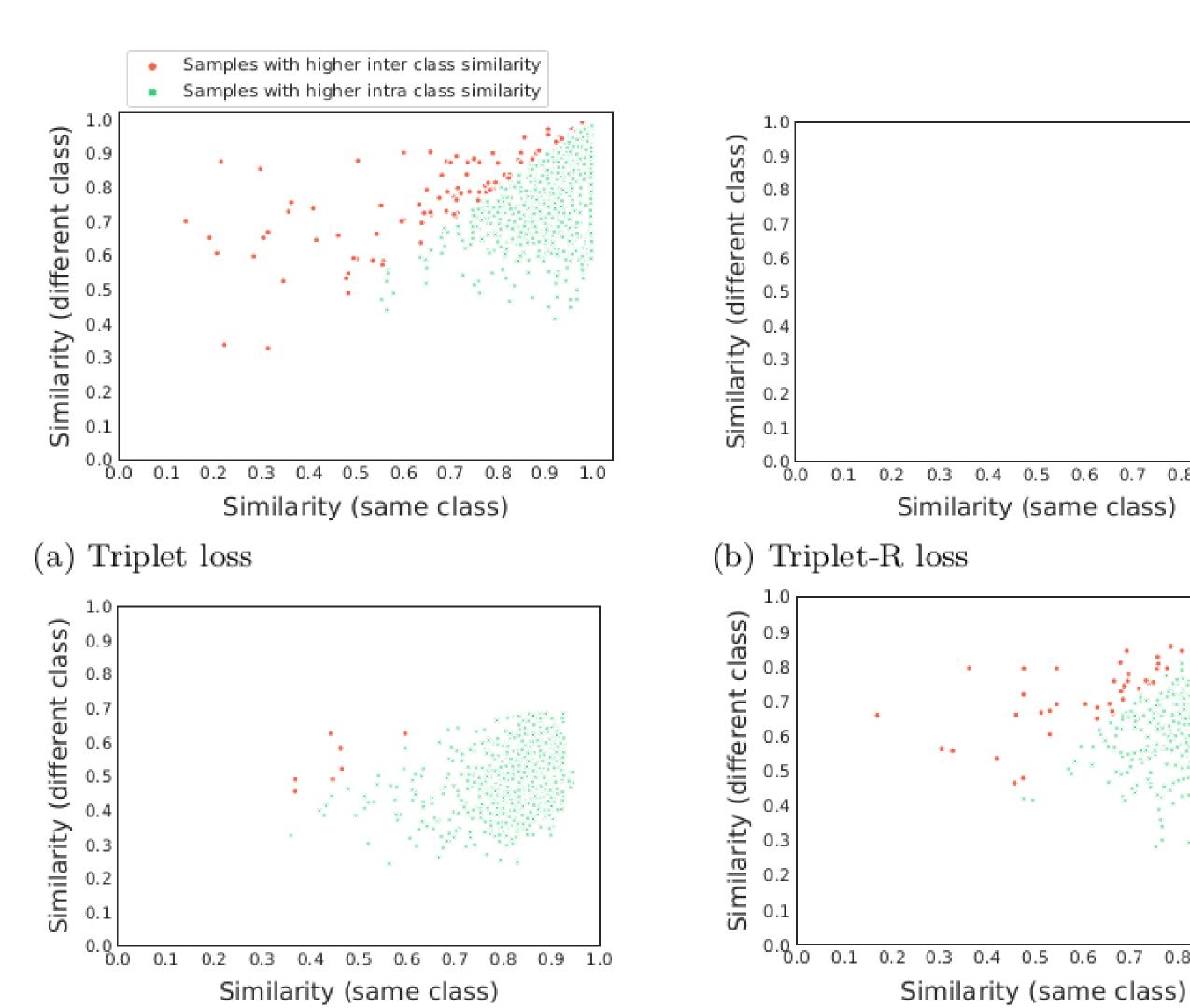


Fig. 3: Scatter plots showing the cosine similarity to the most similar example from the same and different classes of the AXT-Internal test dataset, for 4 different losses.

(d) ArcFace loss

(c) Softmax loss

Generalization Capabilities

Training on a varied dataset yield better results on unseen datasets.

Test		AXT-Internal		Midv2	Midv500			
		TestSet	scan rotated	scan upright	photo	clip	* All	** TestSet
	100%	99.80	100.00	100.0	98.80	98.09	99.70	99.71
AXT-Internal	75%	96.20	100.00	100.0	97.70	97.55	99.57	99.54
AA1-mternai	50%	92.52	100.00	99.70	95.80	96.96	99.22	99.29
	25%	84.20	98.60	98.00	91.10	94.87	98.59	98.87
Midv500*	All	71.21	99.80	97.70	94.30	96.21	99.96^{\dagger}	99.94^{\dagger}
Midv500**	${\bf TrainSet}$	49.00	79.70	79.10	58.40	58.19	88.79	87.55
Midv2020	All split	66.11	100.00^{\dagger}	100.00^{\dagger}	99.00^{\dagger}	99.75^{\dagger}	94.35	95.43

Table 4: Cross dataset one-shot classification accuracies. * filtered using [13] criterion, ** filtered using [23] criterion. † test samples overlap with training samples, values only serves as references of "ideal classification accuracy".

• Increasing the number of training classes help to better generalize to an increasing number of reference models.

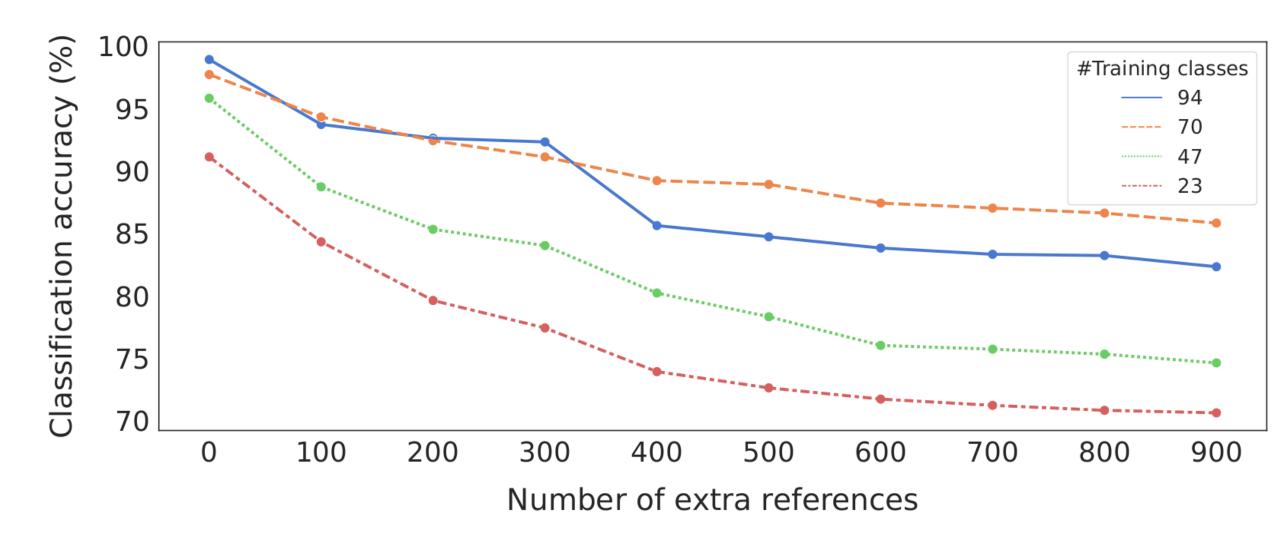


Fig. 4: One-shot classification accuracy in regard to the number of reference classes on the Midv2020 photo dataset.

Comparison with SOTA

• Our end-to-end localization + classification pipeline outperforms the current state-of-the-art approaches on all acadamic and private datasets.

Dataset	AXT-Internal	${f Midv2020}$				${f Midv500}$	
		scan	scan	1 4	1.	*	**
Method	$\operatorname{TestSet}$	rotated	upright	photo	clip	All	TestSet
RFDoc [23]	-	-	-	-	-	-	93.46
SURF + Filters [5]	-	100.00 [9]	100.00 [9]	95.10 [9]	64.38 [9]	97.20 [15]	-
Beblid256 [9]	-	100.00	99.90	98.20	81.75	-	92.78 [23]
Beblid512 [9]	-	100.00	100.00	98.70	84.48	-	93.51 [23]
EffDet + Mnasnet [13]	94.98	-	-	-	-	93.91	-
EffDet + Ours	99.34	100.00	99.40	96.10	95.78	99.50	99.47

Table 5: Results of the proposed one-shot classification approach and other published classification methods, a - means that no results for this particular dataset was available.

Conclusion

- **Diversity matters:** The greater diversity in the axt-internal private dataset compared to the academic datasets show greater generalization capabilities on unseen datasets.
- **Simplicity is always a good thing:** Surprisingly, on simple use cases like this one, the simple softmax loss outperforms modern alternatives tailored for face classification.