

Mathieu FRANCOIS, Université de Lyon, INSA-Lyon, CNRS, UCBL, LIRIS, UMR5205, F-69621 Villeurbanne, France, francois.mathieu@orinox.com Véronique EGLIN, Université de Lyon, INSA-Lyon, CNRS, UCBL, LIRIS, UMR5205, F-69621 Villeurbanne, France, veronique.eglin@insa-lyon.fr Maxime BIOU, Orinox, Vaulx-en-Velin, France, biou.maxime@orinox.com

## Objectives

- Digital transformation engineering ΟΤ documents
- Extraction of textual entities on large and unstructured documents
- Short text contextualisation and correct OCR predictions of Tags.

## Related works

#### **Post-OCR Correction**

[ICADL2020] When to Use OCR Post-correction for Named Entity Recognition?, [ICDAR2019] A Cost Efficient Approach to Correct OCR Errors in Large Document Collections, [2019] Leveraging text repetitions and denoising autoencoders in OCR postcorrection, [ACL2017] OpenNMT: Open-source toolkit for neural machine translation

#### **Text Detection**

[CVPR2017] EAST: An Efficient and Accurate Scene Texte Detector, [ICPR2020] DUET: Detection Utilizing Enhancement for Text in Scanned or Captured Documents, [CVPR2019] Character Region Awareness for Text Detection, [ICDAR2021] Context Free TextSpotter for Real-Time and Mobile End-to-End Text **Detection and Recognition** 

# Text detection and post-OCR correction in Engineering Documents

## Contribution

#### **Detection** :

- Based on the FCN model EAST with pre-trained Affinity Propagation Resnet V1.
- NMS part is removed by filtering own our method.
- Adaptation of the system to the use case

### **Post-OCR Correction**:

- Identification
- Proposal characters

# Experimentations

- Industrial data are sensitive and cannot be shared, so we have tested on our own dataset
- Calculation of the Precision, Recall & F1 Score for the detection module
- The Affinity Propagation clusters are the tags of the plan "shot by shot"
- Difference between the WER of the OCR output and the post-OCR Correction : 7% (75% OCR-82% post-

## Conclusion & future works

- Focus on graphic symbols to help the post-OCR correction
- Association of symbolic and textual entities
- Improve initial step of text recognition by OCR competition

Clustering of Tags using of potential errors made by the OCR by analyzing the tag structure to correct misrecognized



| <b>P0</b> | P1        | OCR                       | Post-OCR                  |
|-----------|-----------|---------------------------|---------------------------|
| (15,200)  | (36,212)  | AA-2504-X <mark>x</mark>  | AA-2504-XX                |
| (135,200) | (148,212) | AA-25 <mark>Q</mark> 7-XX | AA-25 <mark>0</mark> 7-XX |
| (264,108) | (278,120) | AA-2513-XX                | AA-2513-XX                |
|           |           |                           |                           |







| recision | Recall | F1 Score |
|----------|--------|----------|
| 0.818    | 0.619  | 0.705    |
| 0.824    | 0.863  | 0.843    |

Evaluation of the detection system with our own dataset