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2. COMPUTATION OF SCORES

The score for each pixel is computed using the following Equations.

1. INTRODUCTION

Foreground-background separation is an impor-
tant problem in document image analysis. Popular I(p)—Tw (p) :

unsupervised binarization methods (such as the Ch (p) = ¢ maxt )CZTVE(V;)(E)I () it 1(p) > Tw (p)
Sauvola’s algorithm) employ adaptive threshold- L = 7 ) —min(D otherwise

ing to classity pixels as foreground or background.

In this work, we propose a novel approach for Cl (p) =1—CY(p) (2)
computing confidence scores of the classification
in such algorithms. This score provides an insight
of the confidence level of the prediction. The com-
putational complexity of the proposed approach

(1)

Here, max(/) and min(/) represent maximum and minimum value of any pixel of an input image I, respectively. It should be noted that the confidence score
lies in the interval |0, 1|. The proposed confidence scores can be generated with any adaptive thresholding approach. For empirical comparison, we considered

Sauvola’s thresholding algorithm [2] as the base method. The threshold is computed for each pixel (Ty (p)) using the Eq 3, where, for an input image I,
R — max(I)—min([]) .

is the same as the underlying binarization algo- 2 .
° ° ° K S
rithm. Our experiments 111ustrat.e the ut11¥ty of the Tw (p) = mPy x [L+k x ( ]sz 1) (3)
proposed scores in various applications like docu-
ment binarization, document image cleanup, and | | The threshold is computed for each pixel (p) based on a window W of size n x n surrounding it, where m;,, s, respectively represent mean and standard

texture addition. deviation of W around pixel p, and k lies between 0 < k < 1.
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