Is multitask learning always better?
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ResNet Results

Table 1: Comparing accuracies of dual vs. multitask learning using the ResNet. Table 2: Comparing accuracies of single vs. multitask learning using the ResNet.

model location date font script model location date font script
date and location 0.67 0.25 - - location only 0.77 - - -
script and font - - 0.98 0.89 date only - 0.49 - -
script and location 0.67 - - 0.87 font only - - 098 -
script and date - 0.32 - 0.91 script only - - - 0.90
font and date - 0.24 0.97 - all tasks 0.66 0.32 0.97 0.88
font and location 0.67 - 0.97 -

all tasks 0.66 0.32 0.97 0.88

Perceiver Results

Table 3: Comparing accuracies of dual vs. multitask learning using the Perceiver. Table 4: Comparing accuracies of single vs. multitask learning using the Perceiver.

model location date font script model location date font script
date and location 0.60 0.19 - - location only 0.67 - - -
script and font - - 0.96 0.80 date only - 0.46 - -
script and location 0.65 - - 0.78 font only - - 096 -
script and date - 0.24 - 0.80 script only - - - 0.82
font and date - 0.17 0.97 - all tasks 0.64 0.23 0.95 0.78
font and location 0.58 - 0.95 -

all tasks 0.64 0.23 0.95 0.78
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Date (orange)
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Conclusions

e Strong competition between tasks

Results are architecture independent

Small semantic shifts can lead to strong incompatibility

Multitask learning can have adversarial results when trained on shifted data-manifolds
This may be mitigated to some degree by semantically closer tasks
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e One has to be very careful in the application of multitask learning
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