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INTRODUCTION TO THE NORMALIZING FLOW FRAMEWORK TEXT SR AND BINARIZATION AS NORMALIZING FLOWS

* px(-)istobeestimated given X = {z1,2z2,--- ,xn} [1, 2]

e Text Super-Resolution is cast as a supervised problem: Estimate HR image given LR image
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px(z) = pu(fo(z)) ‘deté’—x ()] e [ikewise for binarization: Estimate the binarized image given the unprocessed image

. e Results come as a probability density function of the output image given the input image
e How? Transform observations so that they follow p¢..

e [nference is performed by sampling:
e .using a diffeomorphism fo : RP — RP P y pHiE

_ -1 N
* fpis defined as a neural network fy(z) = f* o fE 1 o--.0 fl(z:0). y = f1(z|x),z ~ N(0,7)
* learning = finding the optimal network parameters that transform X so that it follows py (-)

 Framework is recastable to use in a supervised task [3]:

pyix (vl) = pu (fo(yle)ldet 22 (ylz)|,

with a maximum likelihood objective: W

K |
fk . S
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where we set 2" = u, 2™ =y, 2" = f*("|x)Vk € [1, K], pv =N WA S 612‘ q/i_: g: Figure 2: Super-resolution results: Original images and

super-resolved images (7=0.7).
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FLOW LAYERS

Flow layers compose fo. They must be..

Figure 1: Binarization results: Original images and bi-
narization results for different “temperatures” 7.

* expressible

e invertible

* cheap to compute (evaluating det% (x) can be a serious bottleneck!)

CONCLUSION

Z . . (L k k .k L k k ; . . k k
E.g."Affine coupling” (% = {2, ;3 a partition of 2" & f is defined in terms of fy ., /s, * A probabilistic setting combined with neural networks is an attractive option!

2N = J 5 (Zk —1 z) = {fo; — zz_l 1) * Multiple outputs per input are possible, and we know which one is the most likely
o ko k-1 k(. k—1 k (k=1
=2 cerpfy(2a0) + Jo (24 |2) e Probabilistic framework lends easily to nice extensions (e.g. combine with a task-specitic prior)

Note that f; is (easily!) invertible, while féis, fé“’t can be arbitrarily complex and difficult to invert [4]. e Future work: More research on appropriate flow models for document image processing
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