A comparative study of information extraction strategies using an attention-based neural network

Doptim Data Optimizers

1. INTRODUCTION

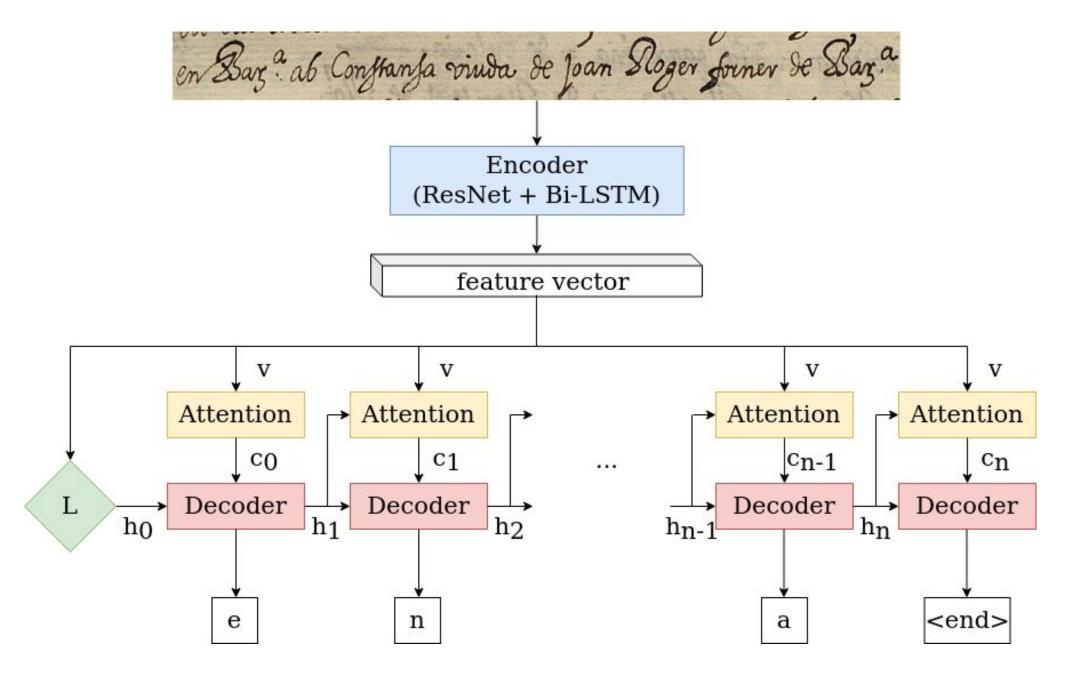
1.1 Context

- We focus on handwritten historical records
- Demographic records have **high historical value** for genealogists and historians
- These documents have been

1.2 Database

- We work on the Esposalles database [1]
 - historical documents from the of the Cathedral of Archives Barcelona from the 17th century marriage records written by one writer old Catalan in

2. OUR ATTENTION-BASED MODEL FOR HTR AND IE


- Traditional models are based on a **CRNN-CTC** architecture
- We propose to use an attention-based **seq2seq** architecture extracts relevant visual features using the attention mechanism implicit model language the decoder learns an in
- State-of-the-art results on IAM and Esposalles at line level without any

digitized, but cannot be searched using keyword queries

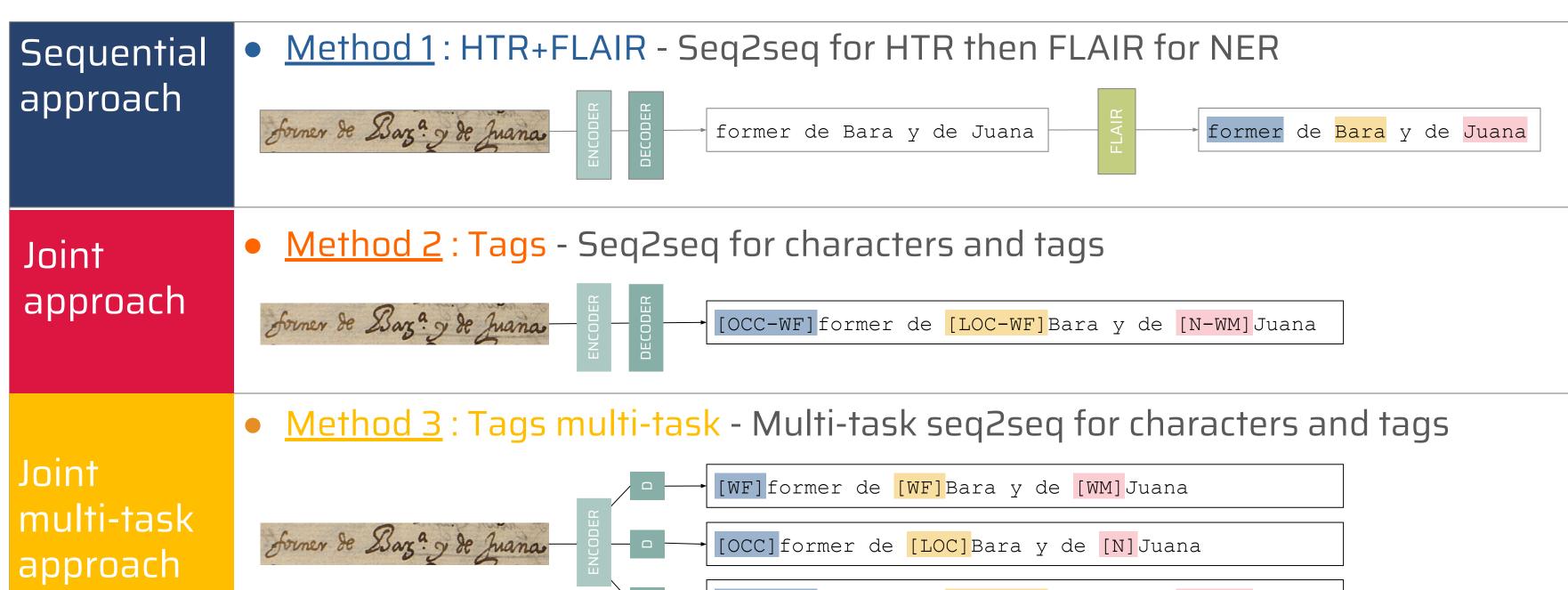
- We aim to develop an automatic important strategy to **extract information** from these documents
- Aim of the IEHHR competition [2]
 - handwritten text recognition (HTR)
 - named entity recognition (NER) with semantic categories and persons
- 100 pages available for training and 25 pages validation, for testing

Dillum	6 a.	vz.	reber	e de	Anton	m Druso	n page	s de	A Aleg	ne de	franja
dilluns	a	13	rebere	de	Antoni	Duran	pages	del	Regne	de	fransa
other	other	other	other	other	name	surname	occupation	other	location	location	location
none	none	none	none	none	husband	husband	husband	none	husband	husband	husband

post- processing or language model

3. EXPLORING STRATEGIES FOR INFORMATION EXTRACTION

4. CONCLUSION


4.1 Summary of our contributions

3.1 Contributions

- We compare fairly **sequential and joint learning strategies** for information extraction
- We introduce an original strategy based on a **multi-task seq2seq** network inspired by [3].
- We use the **same seq2seq architecture** with attention mechanism without any postprocessing or language model

3.2 Results

Approach	Basic score (%) ↑	Complete score (%) ↑	CER (%) ↓	WER (%) ↓
Sequential	91.2	86.7	2.82	8.33
Joint	94.7	94.0	1.81	6.10
Joint multi-task	95.2	94.4	1.74	5.38

- Sequence-to-sequence neural networks with an attention mechanisms are adapted for information historical in records extraction
- Joint HTR and NER using contextual tags improve **recognition**, as compared to traditional sequential approaches
- Multi-task strategies are well suited for this task as multiple specialized decoders share contextual information through the encoder
- Our system achieves **state-of-the-art performance** on the IEHHR competition **at line level**.

Approach	Basic score (%) †	Complete score (%) †
CITIab-ARGUS-2 [2]	91.9	91.6
CVC [4]	90.6	89.4
InstaDeep [5]	95.2	93.3
Joint (ours)	94.7	94.0
Joint multi-task (ours)	95.2	94.4

Legend: Wife's father occupation - Wife's father location - Wife's mother name | N = name; OCC = occupation; LOC = location; WF = wife's father; WM = wife's mother

4.2 Future works

- Working at **paragraph-level** would allow the network information contextual get more **TO**
- Exploring other neural networks with attention (Transformer)

Solène TARRIDE^{1,2}, Aurélie LEMAITRE², Bertrand COÜASNON², Sophie TARDIVEL¹ ¹Doptim, ²Univ Rennes (France)

Contact: solene.tarride@irisa.fr

References

[1] Verónica Romero, Alicia Fornés, Nicolás Serrano, Joan Andreu Sánchez, Alejandro H. Toselli, Volkmar Frinken, Enrique Vidal, & Josep Lladós (2013). The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition. Pattern Recognition, 46(6), 1658-1669. [2] Alicia Fornés, Verónica Romero, Arnau Baró, Juan Ignacio Toledo, Joan Andreu Sánchez, Enrique Vidal, & Josep Lladós (2017). ICDAR2017 Competition on Information Extraction in Historical Handwritten Records. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) (pp. 1389-1394). [3] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, & Lukasz Kaiser. (2016). Multi-task Sequence to Sequence Learning. [4] Manuel Carbonell, Mauricio Villegas, Alicia Fornés & Josep Llados (2018). Joint Recognition of Handwritten Text and Named Entities with a Neural End-to-end Model. [5] Ahmed Cheikh Rouhoua, Marwa Dhiaf, Yousri Kessentini, & Sinda Ben Salem (2021). Transformer-Based Approach for Joint Handwriting and Named Entity Recognition in Historical documents. CoRR, abs/2112.04189.