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Introduction

We present our research on automatic
classification of Hebrew manuscripts into fourteen
categories according to the script types and
graphical modes. To train a deep neural network,
we compiled a dataset of manuscripts where all of
these categories are present.

Maximum score class assignment

The label is determined by taking the regional style
and graphical mode with the maximum score
unless both, the square and cursive, scores are
under a predefined threshold T (we set T = 0.3), in
which case the graphical mode is determined to be
as semi-square.

Hard-label classifiication

We trained and evaluated several architectures on
the extended dataset.

The models were trained until convergence using

50K patches extracted from pages in the train set.
The model was trained using binary cross entropy

The margins between categories of writing styles
are sometimes fuzzy and overlap on visual
appearances level. To categorize the document,
paleographers examine the visual appearance of

loss function. The patches were extracted using

the patch generation method proposed in our

previous work[1], which extracts patches with
uniform text scale and on average 5 lines in each

Nearest neighbour label conversion

This approach utilizes the soft and hard labels in
the training set. It calculates the distances between
the predicted labels and the soft-labels in the

training set and converts each predicted soft-label
to the nearest hard-label in the train set. Figure 5
presets sample results of this conversion.

the handwriting as well as the codicological data,
e.dg., the media on which the document was
written. Since we are working with digital images
only, we are unable to utilize the codicological

patch.

Table 3: Evaluation results of several classification models on blind test set of
the extended dataset.
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similarity of the manuscript to belong to certain
regional type (Ashkenazi, Italian, Sephardic,
Oriental, Byzantine and Yemenite) and the last two
elements are the degrees of similarity to certain
graphical mode, square and cursive (similar values
for both square and cursive indicate the
semi-square mode). Similar to the previous

Figure 1. Hebrew script styles and modes; not all regional styles have cursive
or semi-square mode.

Table 7: Evaluation results of the regression model with the nearest neighbor
label conversion method.
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epochs.

The trained regression model achieved RMSE of
about 0.24. Although, this might give us an
indication that the model give good results (as can
be seen in Figure 3, it is not very meaningful and
does not show how this model compare against
other classification methods. Therefore, arose a
need to convert the predicted soft-label to
hard-labels. Next, we explore two different
conversion methods:

the National Library of Israel, the British Library,
and the Bibliotheque nationale de France. Almost
all manuscripts in the Oriental square script belong
to the National library of Russia (we used b/w
microfilms from the collection of the Institute for
Microfilmed Hebrew Manuscripts at the National
Library of Israel).

We only included pages with one script type and
one script mode per page. For example, Sephardic
square only, and not main text in Sephardic square
and comments in Sephardic cursive.

Conclusions

We trained and evaluated several classification
models on the hard-labeling configuration.
ResNet50 topped the list with an accuracy of 60%.
In addition, we experimented with soft-labeling,
training a regression model to predict the similarity
values of each image to each geographical and
graphical type. Since such a model cannot be
directly compared with regular hard-label

Table 6: Evaluation results of the regression model with maximum score class
conversion method.
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