Paired Image to Image Translation for Strikethrough Removal from Handwritten Words

Raphaela Heil, Ekta Vats, Anders Hast

□ raphaela.heil@it.uu.se

15th IAPR International Workshop on Document Analysis Systems 2022 2022-05-24, La Rochelle, France

Strikethrough Removal

removing strikethrough strokes, returning the original, clean words

Primary use case:

research questions for which struck-through (deleted) words are of interest, e.g. **genetic criticism**

 \rightarrow pre-processing for humans and machines

	IS VER	
Single	for for	
Double	tetails details	25
Diagonal	they then	
Cross	thed tried	
ZigZag	stooting starting	
Wave	and and	
Scratch	書计	

Fig.: Examples of different types of struck-through words and respective clean ground truth.

General Approach

- paired image to image translation
 - from source domain (struck words) to target domain (clean words)
- segmentation-based, i.e. focus on struck-through words

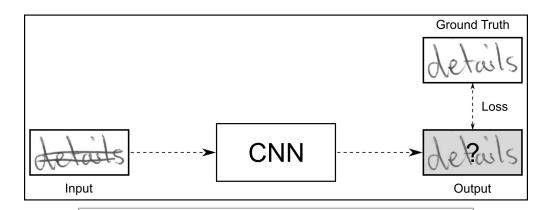
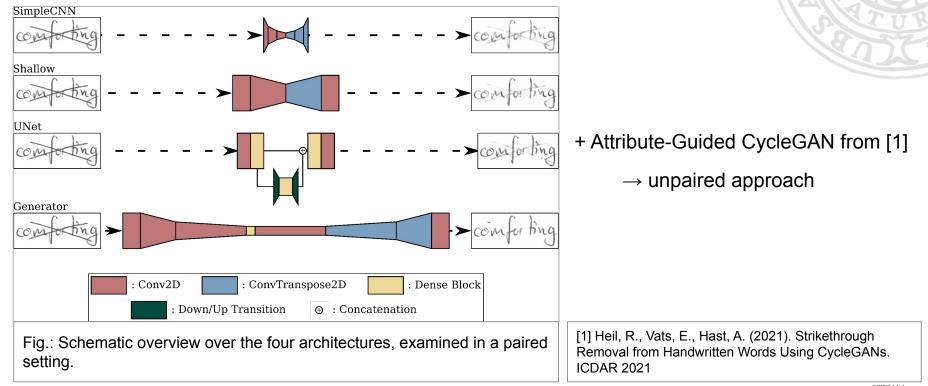


Fig.: Schematic view of paired image to image translation for strikethrough removal.

Examined Models



Examined Models

SimpleCNN		SALTUR BADCE
Shallow comforting > comforting	Model name	Parameter count
UNet	SimpleCNN	28 065
contorting >	Shallow	154 241
	UNet	181 585
Generator	Generator	1345217
comforting >	Attribute-guided CycleGAN [1]	8217604
: Conv2D : ConvTranspose2D : Dense Block : Down/Up Transition : Concatenation		
Fig.: Schematic overview over the four architectures, examined in a paired setting.	[1] Heil, R., Vats, E., Hast, A. (2021). S Removal from Handwritten Words Usir ICDAR 2021	
	<u>.</u>	UPPSALA

Datasets

- focus on synthetic data for training
 - genuine paired strikethrough data not easily obtained from conventional manuscripts
- evaluation on genuine data

- segmentation-based
- greyscale
- background removed

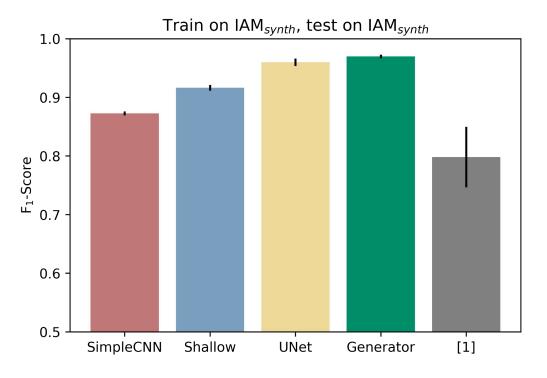
Datasets

Dataset	IAM _{synth}	Dracula _{real}	Dracula _{synth}	
General Info	subset of IAM	handwritten copy of a portion of Bram Stoker's Dracula	clean words from Dracula _{real} train + synthetic strikethrough	
	+ synthetic strikethrough	write \rightarrow scan \rightarrow strike through \rightarrow scan \rightarrow align	5 sets of random strikethrough stroke augmentations per word	
writers	multi (no set overlap)	single	single	
# train	3066	126	5 x 126 and 630	
# validation	273	126	N/A	
# test	819	378	N/A	
samples	the RA	time as	AMAA 💰 it	

Experiments

- 1. Train on IAM_{synth} test on IAM_{synth}
 - base comparison with [1]
- 2. Train on IAM_{synth} test on Dracula_{real}
 - how well do the synthetic multi-writer models perform on (unseen) genuine single-writer data?
- 3. Train on individual sets of Dracula_{synth} test on Dracula_{real}
 - > what performance can be achieved with few (126) writer-specific synthetic samples?
- 4. Train on aggregated sets of Dracula_{synth} test on Dracula_{real}
 - can results from 3. be improved by combining the sets?
 - $(\rightarrow$ same unique words images but larger variation in strikethrough strokes)

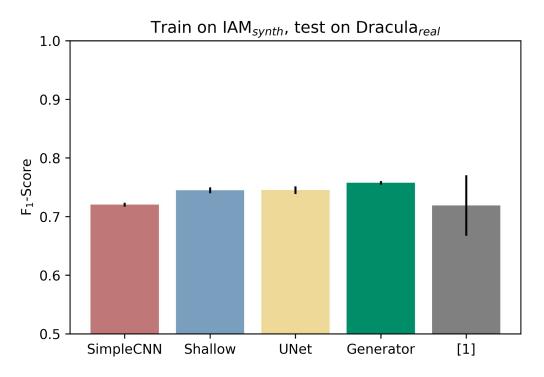
1. Train on IAM_{synth} — Test on IAM_{synth}



base comparison with [1]:

 \rightarrow paired approaches outperform attribute-guided CycleGAN

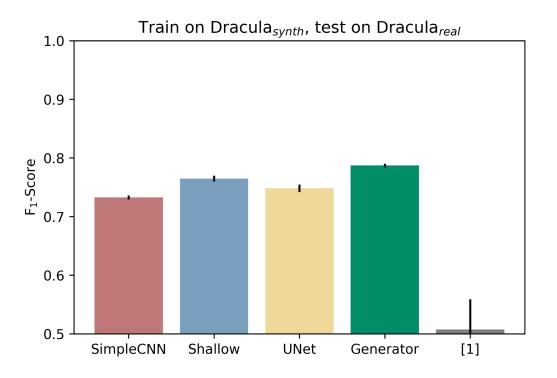
2. Train on IAM $_{\rm synth}$ — Test on $\rm Dracula_{\rm real}$



How well do the synthetic multi-writer models perform on (unseen) genuine single-writer data?

 \rightarrow clear drop in performance \rightarrow overall very similar performance across models

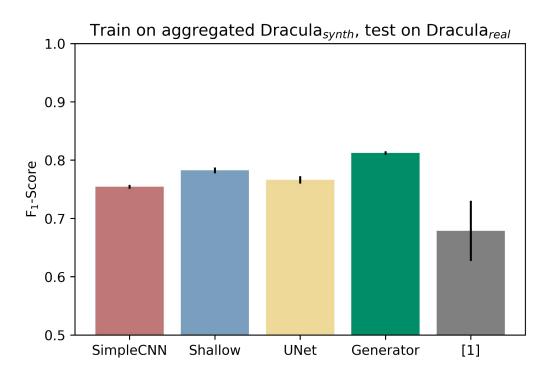
3. Train on sets of $Dracula_{synth}$ — Test on $Dracula_{res}$



What performance can be achieved with few (126) writer-specific synthetic samples?

→ paired approaches outperform their IAM_{synth} counterparts → drastic performance drop for attribute-guided CycleGAN

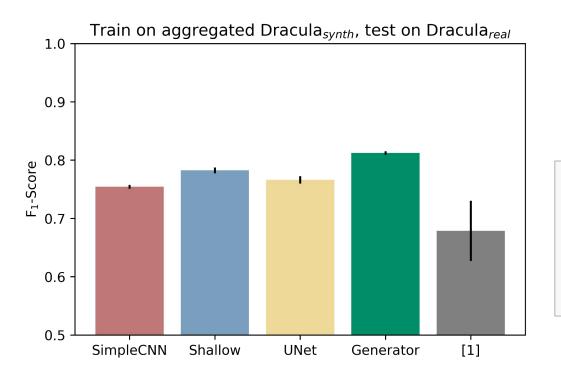
4. Train on aggregated Dracula_{synth} — Test on Dracula_{real}



Can results from 3. be improved by combining the sets?

→ modest but consistent
improvement for paired approaches
→ substantial improvement for
attribute-guided CycleGAN

4. Train on aggregated Dracula_{synth} — Test on Dracula_{real}



Can results from 3. be improved by combining the sets?

Future work: impact of increasing the number of unique word images in train set

Qualitative Results (trained on aggregated Dracula

Ground Truth	pretended	tongue	further	comforting	and
Struck Input	pretended	tongue	further	comforting	and
SimpleCNN	pretended	tongue	herther	comforting	and
Shallow	pretended	tongue	further	comfor ting	and
UNet	petended	tongue	herther	comforting	and
Generator	pretended	tongue	further	comfor ting	and
CycleGAN	petended	longue	further	confocting	and

Fig.: Cherry-picked examples. Mean greyscale images, averaged over output from 30 separate models each.

Ground Truth	all	fle	Came	simply	he
Struck Input	ætt	. Ale	lance	sinaply	Ę
SimpleCNN	ætt	Dog	lanne	sincepty	\$
Shallow	att	the	lance	simply	R
UNet	att	the	lance	sinapplay	R
Generator	ætt	the	lance	sin ply	R
CycleGAN	all	the	lande	simply	K.

Fig.: Lemon-picked examples. Mean greyscale images, averaged over output from 30 separate models each.

Conclusions

- 1. paired approaches outperform attribute-guided CycleGAN
 - general cleaning performance
 - model size
- 2. writer-specific models outperform multi-writer in domain
 - future work: impact of finetuning from multi to single-writer
- 3. varying difficulty of stroke types
 - most challenging: zigzag, wave and scratch
 - future work: focus efforts on challenging strokes

Contact: raphaela.heil@it.uu.se ekta.vats@abm.uu.se anders.hast@it.uu.se

For links to our code and datasets, please see Appendix A of our paper!

The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE), partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

This work is partially supported by Riksbankens Jubileumsfond (RJ) (Dnr P19-0103:1)

