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Strikethrough Removal

removing strikethrough strokes, returning the 
original, clean words

Primary use case:

research questions for which struck-through 
(deleted) words are of interest, e.g. genetic 
criticism 

→ pre-processing for humans and machines
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Fig.: Examples of different types of struck-through 
words and respective clean ground truth. 



General Approach
• paired image to image translation

• from source domain (struck words) to target domain (clean words)
• segmentation-based, i.e. focus on struck-through words
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Fig.: Schematic view of paired image to image 
translation for strikethrough removal.



Examined Models

+ Attribute-Guided CycleGAN from [1]

→ unpaired approach
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[1] Heil, R., Vats, E., Hast, A. (2021). Strikethrough 
Removal from Handwritten Words Using CycleGANs. 
ICDAR 2021

Fig.: Schematic overview over the four architectures, examined in a paired 
setting. 



Examined Models
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[1] Heil, R., Vats, E., Hast, A. (2021). Strikethrough 
Removal from Handwritten Words Using CycleGANs. 
ICDAR 2021

Fig.: Schematic overview over the four architectures, examined in a paired 
setting. 

[1]



Datasets

• focus on synthetic data for training
➢ genuine paired strikethrough data not easily obtained from conventional 

manuscripts
• evaluation on genuine data

• segmentation-based
• greyscale
• background removed
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Datasets
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Dataset IAMsynth Draculareal Draculasynth

General Info subset of IAM 
+ synthetic strikethrough

handwritten copy of a portion of 
Bram Stoker’s Dracula

write → scan → strike through 
→ scan → align

clean words from Draculareal train 
+ synthetic strikethrough 

5 sets of random strikethrough 
stroke augmentations per word

writers multi (no set overlap) single single

# train 3066 126 5 x 126 and 630

# validation 273 126 N/A

# test 819 378 N/A

samples



Experiments
1. Train on IAMsynth  — test on IAMsynth

➢ base comparison with [1] 

2. Train on IAMsynth — test on Draculareal
➢ how well do the synthetic multi-writer models perform on (unseen) genuine single-writer 

data?  

3. Train on individual sets of Draculasynth — test on Draculareal
➢ what performance can be achieved with few (126) writer-specific synthetic samples?

4. Train on aggregated sets of Draculasynth — test on Draculareal
➢ can results from 3. be improved by combining the sets? 

(→ same unique words images but larger variation in strikethrough strokes) 
8



1. Train on IAMsynth — Test on IAMsynth

base comparison with [1]:

→ paired approaches outperform 
attribute-guided CycleGAN
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2. Train on IAMsynth — Test on Draculareal
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How well do the synthetic 
multi-writer models perform on 
(unseen) genuine single-writer 
data?

→ clear drop in performance
→ overall very similar performance 
across models



3. Train on sets of Draculasynth — Test on Draculareal
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What performance can be achieved 
with few (126) writer-specific 
synthetic samples? 

→ paired approaches outperform 
their IAMsynth counterparts 
→ drastic performance drop for 
attribute-guided CycleGAN 



4. Train on aggregated Draculasynth — Test on Draculareal

12

Can results from 3. be improved by 
combining the sets? 

→ modest but consistent 
improvement for paired approaches 
→ substantial improvement for 
attribute-guided CycleGAN



4. Train on aggregated Draculasynth — Test on Draculareal
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Can results from 3. be improved by 
combining the sets? 

→ modest but consistent 
improvement for paired approaches 
→ substantial improvement for 
attribute-guided CycleGAN

Future work: impact of increasing 
the number of unique word images 
in train set



Qualitative Results (trained on aggregated Draculasynth)
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Fig.: Cherry-picked examples. Mean greyscale images, 
averaged over output from 30 separate models each.

Fig.: Lemon-picked examples. Mean greyscale 
images, averaged over output from 30 separate 
models each.



Conclusions

1. paired approaches outperform attribute-guided CycleGAN

• general cleaning performance
• model size

2. writer-specific models outperform multi-writer in domain

• future work: impact of finetuning from multi to single-writer 

3. varying difficulty of stroke types

• most challenging: zigzag, wave and scratch
• future work: focus efforts on challenging strokes
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Contact: 
raphaela.heil@it.uu.se
ekta.vats@abm.uu.se 
anders.hast@it.uu.se 

For links to our code and datasets, please see 
Appendix A of our paper!
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