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Motivation

Task: Keyword Spotting on segmented word images

Motivation: Transform/deform images to be as close to query as possible

Input Image
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Deformed Image minimize Target Image (Query)
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Motivation

Task: Keyword Spotting on segmented word images

Motivation: Transform/deform images to be as close to query as possible

Input Image : Overview of the proposed method: :
| |
I;ZQQ \/&M | Iteratively deform an image in order to minimize its :
/ : distance to a query image w.r.t. a feature space. |
I
| |
¥ : Features are extracted from a DNN! :
I
Deformed Image minimize Target Image (Query)
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Network Architecture

PHOCNet" alternative:
v’ Targets are PHOC (Pyramidal Histogram of Characters)
representations

*S. Sudholt et al., “PHOCNet: A deep convolutional neural network for
word spotting in handwritten documents”, ICFHR, 2016
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Network Architecture

PHOCNet™ alternative: PHOCestimator | = ™% "% "= |
v’ Targets are PHOC (Pyramidal Histogram of Characters) - Jinputimage: 64256
representations (Lcow7x732 )
v’ Architecture: ((MaxPool, 2 x 2 )
* ResNet-based CNN backbone 2x( ResBlock3x3,64 )
* Column-wise max-pooling CNN < ((MaxPool, 2 x 2 )
. 1.D CNN for encodlng Femporal information backbone 4 x( ResBlock 3% 3,128 )
* linear head for predicting PHOCs
v’ Compact architecture: ~8M parameters ((MaxPool2x 2 )
4 x( ResBlock 3 x 3,256 )

. 33D feature map: 8 x 32 x 25
( Column MaxPool )

l feature sequence: 32 X 256
1D CNN {3 x(  conv5256 )

l feature sequence: 4 X 256

Training Details:
v BCE loss
v' Adam optimizer (Ir=0.001) with multistep scheduler.

( Concatenate
l, feature vector: 1024

Linear ( Linear,1024 )

Head ( Linear, phoc_size )

PHOC estimation

*S. Sudholt et al., “PHOCNet: A deep convolutional neural network for
word spotting in handwritten documents”, ICFHR, 2016
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Deformations

Considered Deformations:
O Global Affine
3 x2transformation matrix
O Local Affine
* splitimage along x-axis
* apply an affine transformation to each part
» bilinear interpolation of local affine parameters for consistency
1 Local Deformation
* X,y translation vectors over 8 x 8 image patches



Deformations

Considered Deformations:
O Global Affine
3 x2transformation matrix
O Local Affine
* splitimage along x-axis
* apply an affine transformation to each part
» bilinear interpolation of local affine parameters for consistency
1 Local Deformation
* X,y translation vectors over 8 x 8 image patches

initial image | local affine
Came. COoOnmae
global affine local deformation
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Query-based Deformation

I' =T (I: d)/X

\ Deformation Parameters

Initial Image {dg@j dZ(I,j dZd}



Query-based Deformation

I'="7T(I;:d)

\ Deformation Parameters

Initial Image {dg@? dla,j dZd}
/ N\

Global Affine || Local Deformation
Local Affine




Query-based Deformation

I'=7(;d)

\ Deformation Parameters

Initial Image {dng dZG_’,j dZd}
/ N\

Transformation Function Global Affine

| Local Deformation

STN (Spatial Transformer Network) formulation Local Affine
Transformed image computed as a grid-based interpolation



Query-based Deformation

I'=7(;d)

/ \ Deformation Parameters
Transformed Image Initial Image {(:19(1j dl(lj dld}

/

Transformation Function Global Affine

STN (Spatial Transformer Network) formulation
Transformed image computed as a grid-based interpolation

\ 4

Local Affine

AN

Local Deformation



Query-based Deformation

Our problem is then formulated as the maximization of:

SC (f (T(Iw : d) ) : f (Iq)) v" Compare the features of the transformed
/ \ word image and the template query image

Cosine Similarity Word Image

Query Image
Template



Query-based Deformation

Our problem is then formulated as the maximization of:

Sc (@(T(Iw ; d) ) ; @(Iq)) v' Compare the features of the transformed
/ \ word image and the template query image

Cosine Similarity Word Image

JV
Feature Extractor
Deep Features

Query Image
Template



Query-based Deformation

Our problem is then formulated as the maximization of:

Sc (@(T(Iw ; d) ) , @(Iq)) v' Compare the features of the transformed

word image and the template query image
/ \ v’ Optimize w.r.t. deformation parameters d

Cosine Similarity Word Image

JV
Feature Extractor
Deep Features

Query Image
Template



Query-based Deformation

Our problem is then formulated as the maximization of:

Sc (@(T(Iw ; d) ) , @(Iq)) v' Compare the features of the transformed

word image and the template query image
/ \ v Optimize w.r.t. deformation parameters d

Cosine Similarity Word Image

JV
Feature Extractor
Deep Features

Query Image
Template

HOW?

* Deep features are extracted from the output of the 1D CNN component

* Optimize via gradient descent (Adam optimizer)

* NN weights are kept fixed

* Update only deformation parameters

 CONSTRAINTS NEEDED! (unconstrained optimization may considerably distort images)



Query-based Deformation

Proposed Loss (to be minimized): o
Feature Similarity Loss

I 4

£(d) =1~ [Sc(F(T (L)) L)+
Cal T (L)~ T+ bld]>

\

extra constraint terms

a, b : user-defined hyper-parameters
Empirically settoa = 10,b =1



Query-based Deformation

Proposed Loss (to be minimized): o
Feature Similarity Loss

I 4

£(d) =1 —[Se(F(T (Lo d)). FI) )+
[T Mo:d) 1,15+ A1l

Visual Similarity Loss Regularization Loss
Bring transformed image close Keep the deformation
to the initial one parameters close to zero

a, b : user-defined hyper-parameters
Empirically settoa = 10,b =1



Query-based Deformation

Algorithm Overview: Iterate over the proposed loss

- . . S S S S S S D B D B B e e e

Algorithm : On-the-fly Deformation ¢ Implementation Aspects N

~
-

Input: Adam hyperparameters, number of iterations A,
initial deformation dg, loss hyperparameters a, b

Output: optimized deformation parameters dg

1: Initialize d as dg

2: for:=0to K — 1 do

3:  Forward Pass: Compute £(d;) according to Eq. 2
Backward Pass: Compute V£(d;) number of iterations and the number
Adam Update: d;1q of words in the dataset
6: end for ' !

T s S I I DS DD G DG B B DS B B B B e

Complexity Issue: perform gradient
descent for each pair (word, query)

Linear dependence to both the

[y ST S
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Complexity Issues

Number of words N,,

Number of iterations K



Complexity Issues

Number of words N,,

Assume that we have a well-performing feature extractor

“fine-tune” matching score with the proposed method for a limited subset of the N,, most relevant words!

Number of iterations K
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I”

Treat our concept as a “counter-adversarial” example
Assume that minor changes in deformation parameters can affect performance

¥

Perform the proposed method for a small number of iterations K



Complexity Issues

Number of words N,,

Assume that we have a well-performing feature extractor

“fine-tune” matching score with the proposed method for a limited subset of the N,, most relevant words!

Number of iterations K

I”

Treat our concept as a “counter-adversarial” example
Assume that minor changes in deformation parameters can affect performance

¥

Perform the proposed method for a small number of iterations K

image deformations of large-magnitude should cautiously
perform many steps of the proposed algorithm with small Ir



Complexity Issues

Number of words N,,

Assume that we have a well-performing feature extractor

“fine-tune” matching score with the proposed method for a limited subset of the N,, most relevant words!

Number of iterations K

I”

Treat our concept as a “counter-adversarial” example
Assume that minor changes in deformation parameters can affect performance

¥

Perform the proposed method for a small number of iterations K

image deformations of large-magnitude should cautiously
perform many steps of the proposed algorithm with small Ir

Proof-of-concept Setting: applying random transformations of negligible magnitude

mean absolute difference in AP for all considered queries is ~ 1.5%




Ablation

Ablation setting: KWS performance on IAM validation set

Ir = 0.01,K =3, N, =50

deformation MAP (%)
reference 95.59
cgaffine 95.91
laffine 96.22
ldeform 96.19
caffine + laffine 96.12
cgaffine + ldeform 96.14
laffine + ldeform 96.32
cgaffine + laffine + ldeform| 96.40

v" Increased performance when using all possible deformations



Ablation

base parameters: lr = 0.01, K =3, N,, = 50

K MAP (%)|time (sec/query) N.  |MAP (%)|time (sec/query)
reference| 95.59 - reference| 95.59 -

1 95.97 0.24 10 96.21 0.14

2 96.34 0.40 25 96.33 \ 0.30

3 96.40 0.57 50 96.40 0.57

4 06.26 0.74 75 96.39 0.83

5 06.23 0.91

10 06.11 1.75

15 096.07 261 j Time .requirements increase- Iinea.\rly with K, N,

o _ Iterating the approach multiple times may falsely match

20 95.98 3.45 images to the query : constraints are very important!

v’ Increasing N, over a specific threshold does not help

Letting an image to be significantly transformed may falsely bring not relevant words close to the query



Qualitative Examples

QUERY: ﬂQuQ_

Feature-based retrieval list:

steve ‘ steve here there

steve

here

were

steve

score: \ 0.154 0210  0.211

0.221

0.225

0.227

0.235
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Qualitative Examples

QUERY: ﬂQuQ_

Feature-based retrieval list (64.26% AP):

steve )
0.235 ///( e

differences are not visible!

steve ‘ steve here there steve here were
score; ‘ 0.154 0.210 0.211 0.221 0.225 0.227

Proposed updated retrieval list (91.66% AP):
steve ‘ steve steve here steve there were
0.219

score: \ 0154 0.172 0.191 0208 0.211

| e |




Qualitative Examples

QUERY: ﬂQVQ_

Feature-based retrieval list (64.26% AP):

steve ‘ steve here there steve here were steve
score;: ‘ 0.154 0.210 0.211 0.221 0.225 0.227 0.235

Proposed updated retrieval list (91.66% AP):
steve ‘ steve steve here steve there were here
0.219 0.223

score: \ 0154 0.172 0.191 0208 0.211




Comparison to SOTA: IAM dataset

Method MAP (%)
PHOCNet 72.51
HWNet 80.61
Triplet-CNN 81.58
PHOCNet-TPP 82.74
DeepEmbed 84.25
Deep Descriptors 84.68
Zoning Ensemble PHOCNet 87.48
End2End Embed 89.07
DeepEmbed 90.38
HWNetV2 92.41
NormSpot 92.54
Seq2Emb 92.04

Proposed Systems

reference system 91.88
on-the-fly deformations 93.07




Comparison to SOTA: IAM dataset
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HWNet 80.61
Triplet-CNN 81.58
PHOCNet-TPP 82.74
DeepEmbed 84.25
Deep Descriptors 84.68
Zoning Ensemble PHOCNet 87.48
End2End Embed 89.07
DeepEmbed 90.38
HWNetV?2 92.41
NormSpot 92.54
Seq2Emb 92.04

Proposed Systems
reference system 91.88
on-the-fly deformations 93.07 >

Using cosine distance on PHOC estimation leads to 88.78% MAP



Comparison to SOTA: IAM dataset

Method MAP (%)
PHOCNet 72.51
HWNet 80.61
Triplet-CNN 81.58
PHOCNet-TPP 82.74
DeepEmbed 84.25
Deep Descriptors 84.68
Zoning Ensemble PHOCNet 87.48
End2End Embed 89.07
DeepEmbed 90.38
HWNetV?2 92.41
NormSpot 92.54
Seq2Emb 92.04

Proposed Systems

reference system 91.88
on-the-fly deformations 93.07

Our approach outperforms SOTA
at the cost of computational requirements
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