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Overview of the proposed method:

Iteratively deform an image in order to minimize its 
distance to a query image w.r.t. a feature space.

Features are extracted from a DNN!



Network Architecture

PHOCNet* alternative:
✓ Targets are PHOC (Pyramidal Histogram of Characters)

representations  

*S. Sudholt et al., “PHOCNet: A deep convolutional neural network for 
word spotting in handwritten documents”, ICFHR, 2016



Network Architecture

PHOCNet* alternative:
✓ Targets are PHOC (Pyramidal Histogram of Characters)

representations  
✓ Architecture: 

• ResNet-based CNN backbone
• Column-wise max-pooling 
• 1D CNN for encoding temporal information
• linear head for predicting PHOCs 

✓ Compact architecture:  ∼8M parameters

*S. Sudholt et al., “PHOCNet: A deep convolutional neural network for 
word spotting in handwritten documents”, ICFHR, 2016

Training Details:
✓ BCE loss 
✓ Adam optimizer (lr=0.001) with multistep scheduler. 
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Considered Deformations:
❑ Global Affine 

• 3 × 2 transformation matrix
❑ Local Affine 

• split image along x-axis
• apply an affine transformation to each part 
• bilinear interpolation of local affine parameters for consistency

❑ Local Deformation
• x,y translation vectors over 8 × 8 image patches
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Query-based Deformation
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Query-based Deformation

Our problem is then formulated as the maximization of:

Cosine Similarity

Feature Extractor
Deep Features

Word Image

Query Image
Template

✓ Compare the features of the transformed 
word image and the template query image

✓ Optimize w.r.t. deformation parameters d

HOW?
• Deep features are extracted from the output of the 1D CNN component
• Optimize via gradient descent (Adam optimizer)
• NN weights are kept fixed
• Update only deformation parameters
• CONSTRAINTS NEEDED! (unconstrained optimization may considerably distort images) 



Query-based Deformation

Proposed Loss (to be minimized):
Feature Similarity Loss

a, b ∶ user-defined hyper-parameters
Empirically set to a = 10, b = 1

extra constraint terms



Query-based Deformation

Proposed Loss (to be minimized):
Feature Similarity Loss

Visual Similarity Loss
Bring transformed image close 

to the initial one

Regularization Loss
Keep the deformation 

parameters close to zero

a, b ∶ user-defined hyper-parameters
Empirically set to a = 10, b = 1



Query-based Deformation

:

Algorithm Overview: Iterate over the proposed loss

Implementation Aspects

Complexity Issue: perform gradient 
descent for each pair (word, query)  

Linear dependence to both the 
number of iterations and the number 

of words in the dataset
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Complexity Issues

Number of words 𝑁𝑤

Number of iterations K

Assume that we have a well-performing feature extractor

“fine-tune” matching score with the proposed method for a limited subset of the 𝑁𝑤 most relevant words!

Treat our concept as a “counter-adversarial” example

Assume that minor changes in deformation parameters can affect performance

Perform the proposed method for a small number of iterations K

image deformations of large-magnitude should cautiously 
perform many steps of the proposed algorithm with small lr

Proof-of-concept Setting: applying random transformations of negligible magnitude

mean absolute difference in AP for all considered queries is ∼ 1.5%



Ablation

𝑙𝑟 = 0.01, 𝐾 = 3, 𝑁𝑤 = 50

✓ Increased performance when using all possible deformations 

Ablation setting: KWS performance on IAM validation set 



Ablation

𝑏𝑎𝑠𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝑙𝑟 = 0.01, 𝐾 = 3, 𝑁𝑤 = 50

✓ Time requirements increase linearly with 𝐾, 𝑁𝑤

✓ Iterating the approach multiple times may falsely match 
images to the query : constraints are very important!

✓ Increasing Nw over a specific threshold does not help

Letting an image to be significantly transformed may falsely bring not relevant words close to the query
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differences are not visible!
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Comparison to SOTA: IAM dataset

Using cosine distance on PHOC estimation leads to 88.78% MAP



Comparison to SOTA: IAM dataset

Our approach outperforms SOTA
at the cost of computational requirements
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