On-the-fly Deformations for Keyword Spotting

<u>George Retsinas</u>, Giorgos Sfikas, Basilis Gatos and Christophoros Nikou National Technical University of Athens, NCSR Demokritos & University of Ioannina

gretsinas@central.ntua.gr, sfikas@cs.uoi.gr, bgat@iit.demokritos.gr, cnikou@cs.uoi.gr

Motivation

Task: Keyword Spotting on <u>segmented</u> word images Motivation: Transform/deform images to be as close to query as possible

Input Image

Motivation

Task: Keyword Spotting on <u>segmented</u> word images

Motivation: Transform/deform images to be as close to query as possible

Input Image

Overview of the proposed method:

Iteratively deform an image in order to minimize its distance to a query image w.r.t. a feature space.

Features are extracted from a DNN!

Deformed Image

Target Image (Query)

PHOCNet^{*} alternative:

 Targets are PHOC (Pyramidal Histogram of Characters) representations

*S. Sudholt et al., "PHOCNet: A deep convolutional neural network for word spotting in handwritten documents", ICFHR, 2016

PHOCNet^{*} alternative:

- Targets are PHOC (Pyramidal Histogram of Characters) representations
- ✓ Architecture:
 - ResNet-based CNN backbone
 - Column-wise max-pooling
 - 1D CNN for encoding temporal information
 - linear head for predicting PHOCs
- ✓ Compact architecture: ~8M parameters

Training Details:

- ✓ BCE loss
- Adam optimizer (Ir=0.001) with multistep scheduler.

*S. Sudholt et al., "PHOCNet: A deep convolutional neural network for word spotting in handwritten documents", ICFHR, 2016

Considered Deformations:

- **Global Affine**
 - 3 × 2 transformation matrix
- Local Affine
 - split image along x-axis
 - apply an affine transformation to each part
 - bilinear interpolation of local affine parameters for consistency
- Local Deformation
 - *x,y* translation vectors over 8 × 8 image patches

- Considered Deformations:
- Global Affine
 - 3 × 2 transformation matrix
- Local Affine
 - split image along x-axis
 - apply an affine transformation to each part
 - bilinear interpolation of local affine parameters for consistency
- Local Deformation
 - *x,y* translation vectors over 8 × 8 image patches

Deformation parameters were selected in order to clearly show the effect of the deformations without significantly distorting the image

STN (Spatial Transformer Network) formulation Transformed image computed as a grid-based interpolation

 $S_C(f(\mathcal{T}(\mathbf{I}_w; \mathbf{d})), f(\mathbf{I}_q))$ Cosine Similarity Word Image Query Image Template

Compare the features of the *transformed word image* and the template query image

✓ Compare the features of the *transformed word image* and the template query image

- ✓ Compare the features of the *transformed word image* and the template query image
- ✓ Optimize w.r.t. deformation parameters d

- Compare the features of the *transformed word image* and the *template query image*
- ✓ Optimize w.r.t. deformation parameters d

HOW?

- Deep features are extracted from the output of the 1D CNN component
- Optimize via gradient descent (Adam optimizer)
- NN weights are kept fixed
- Update only deformation parameters
- **CONSTRAINTS NEEDED!** (unconstrained optimization may considerably distort images)

a, b : user-defined hyper-parameters Empirically set to a = 10, b = 1

to the initial one

parameters close to zero

a, b : user-defined hyper-parameters *Empirically set to* a = 10, b = 1

Algorithm Overview: Iterate over the proposed loss

Algorithm : On-the-fly Deformation

Input: Adam hyperparameters, number of iterations K, initial deformation \mathbf{d}_0 , loss hyperparameters a, b

Output: optimized deformation parameters \mathbf{d}_K

1: Initialize \mathbf{d} as \mathbf{d}_0

2: for i = 0 to K - 1 do

- 3: Forward Pass: Compute $\mathcal{L}(\mathbf{d}_i)$ according to Eq. 2
- 4: Backward Pass: Compute $\nabla \mathcal{L}(\mathbf{d}_i)$
- 5: Adam Update: \mathbf{d}_{i+1}
- 6: end for

Implementation Aspects

Complexity Issue: perform gradient descent for each pair (word, query)

Linear dependence to both the number of iterations and the number of words in the dataset

Number of iterations K

Assume that we have a <u>well-performing feature extractor</u>

"fine-tune" matching score with the proposed method for a limited subset of the N_w most relevant words!

Number of iterations K

Assume that we have a <u>well-performing feature extractor</u>

"fine-tune" matching score with the proposed method for a limited subset of the N_w most relevant words!

Number of iterations K

Treat our concept as a "counter-adversarial" example

Assume that minor changes in deformation parameters can affect performance

Perform the proposed method for a **small** number of iterations K

Assume that we have a <u>well-performing feature extractor</u>

"fine-tune" matching score with the proposed method for a limited subset of the N_w most relevant words!

Number of iterations K

Treat our concept as a "counter-adversarial" example

Assume that minor changes in deformation parameters can affect performance

Perform the proposed method for a small number of iterations K image deformations of large-magnitude should cautiously perform many steps of the proposed algorithm with small Ir

Assume that we have a <u>well-performing feature extractor</u>

"fine-tune" matching score with the proposed method for a limited subset of the N_w most relevant words!

Number of iterations K

Treat our concept as a "counter-adversarial" example

Assume that minor changes in deformation parameters can affect performance

Perform the proposed method for a small number of iterations K image deformations of large-magnitude should cautiously perform many steps of the proposed algorithm with small Ir

Proof-of-concept Setting: applying random transformations of negligible magnitude

mean absolute difference in AP for all considered queries is ~ 1.5%

$lr = 0.01, K = 3, N_w =$	50
---------------------------	----

$I \Lambda D (07)$
IAP(70)
95.59
95.91
96.22
96.19
96.12
96.14
96.32
96.40

 \checkmark Increased performance when using all possible deformations

base parameters: $lr = 0.01, K = 3, N_w = 50$

K	MAP $(\%)$	time $(sec/query)$
reference	95.59	-
1	95.97	0.24
2	96.34	0.40
3	96.40	0.57
4	96.26	0.74
5	96.23	0.91
10	96.11	1.75
15	96.07	2.61
20	95.98	3.45

N_w	MAP $(\%)$	time $(sec/query)$
reference	95.59	-
10	96.21	0.14
25	96.33	0.30
50	96.40	0.57
75	96.39	0.83

✓ Time requirements increase linearly with K, N_w

- ✓ Iterating the approach multiple times may falsely match images to the query : *constraints are very important!*
- $\checkmark\,$ Increasing N_w over a specific threshold does not help

Letting an image to be significantly transformed may falsely bring not relevant words close to the query

Qualitative Examples

QUERY:

Feature-based retrieval list:

steve	steve	here	there	steve	here	were	steve
score:	0.154	0.210	0.211	0.221	0.225	0.227	0.235

lleve

QUERY:

Feature-based retrieval list (64.26% AP):

steve	steve	here	there	steve	here	were	steve
score:	0.154	0.210	0.211	0.221	0.225	0.227	0.235

differences are not visible!

Proposed updated retrieval list (91.66% AP):

steve	steve	steve	here	steve	there	were	here
score:	0.154	0.172	0.191	0.208	0.211	0.219	0.223

QUERY:

Feature-based retrieval list (64.26% AP):

steve	steve	here	there	steve	here	were	steve
score:	0.154	0.210	0.211	0.221	0.225	0.227	0.235

Proposed updated retrieval list (91.66% AP):

steve	steve	steve	here	steve	there	were	here
score:	0.154	0.172	0.191	0.208	0.211	0.219	0.223

Method	MAP $(\%)$
PHOCNet	72.51
HWNet	80.61
Triplet-CNN	81.58
PHOCNet-TPP	82.74
DeepEmbed	84.25
Deep Descriptors	84.68
Zoning Ensemble PHOCNet	87.48
End2End Embed	89.07
DeepEmbed	90.38
HWNetV2	92.41
NormSpot	92.54
Seq2Emb	92.04
Proposed Systems	
reference system	91.88
on-the-fly deformations	93.07

Method	MAP $(\%)$	
PHOCNet	72.51	
HWNet	80.61	
Triplet-CNN	81.58	
PHOCNet-TPP	82.74	
DeepEmbed	84.25	
Deep Descriptors	84.68	
Zoning Ensemble PHOCNet	87.48	
End2End Embed	89.07	
DeepEmbed	90.38	
HWNetV2	92.41	
NormSpot	92.54	
Seq2Emb	92.04	
Proposed Systems		
reference system	91.88	
on-the-fly deformations	93.07	

Using cosine distance on PHOC estimation leads to 88.78% MAP

Method	MAP $(\%)$
PHOCNet	72.51
HWNet	80.61
Triplet-CNN	81.58
PHOCNet-TPP	82.74
DeepEmbed	84.25
Deep Descriptors	84.68
Zoning Ensemble PHOCNet	87.48
End2End Embed	89.07
DeepEmbed	90.38
HWNetV2	92.41
NormSpot	92.54
Seq2Emb	92.04
Proposed Systems	
reference system	91.88
on-the-fly deformations	93.07

Our approach outperforms SOTA at the cost of computational requirements

Thank

Acknowledgements

This research has been partially co-financed by the EU and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the calls: "RESEARCH - CREATE - INNOVATE", project Culdile, and "OPEN INNOVATION IN CULTURE", project Bessarion.