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• Signature verification
• Writer-dependent

• Writer-independent

• Higher reliability is needed

Background – signature verification
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• Conventional methods aim at optimizing classification 
performance, while allowing some mistakes ← they matter!
• Metric learning (optimizing the distance between samples)

However, typical metric learning methods can not 
always achieve the high reliability…
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• Conventional methods aim at optimizing classification 
performance, while allowing some mistakes ← they matter!
• Metric learning (optimizing the distance between samples)

However, typical metric learning methods can not 
always achieve the high reliability…
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• A new objective for more reliable “positives”

• More reliable “positives” = Higher reliability

Purpose
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• Not distance between samples, 
but ranking of each (paired) sample

• Typical ranking: More G-G samples should be ranked 
higher than G-F samples

Idea 1: Ranking of paired samples
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• “Push” more G-G samples to be top-ranked

Idea 2: Top-rank learning
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• Typical (Bipartite) Ranking = AUC maximization

• Top-rank learning = pos@top maximization

Typical ranking vs top-rank: details

8

The objective function of (b): 𝒑𝒐𝒔@𝒕𝒐𝒑 =
𝟏

𝒎
σ𝒊=𝟏
𝒎 𝑰(𝒓 𝒙𝒊

+ > 𝐦𝐚𝐱
𝟏≤𝒋≤𝒏

𝒓(𝒙𝒋
−))

(a) Bipartite ranking[1] (b) Top-rank learning[2]

Absolute 
top positives

False positive rate

Top-rank learning

True
Positive

rate

p
o

s@
to

p

Standard ranking

(c) Difference in ROCs

Top-ranked 
negative



• The learning objective and the structure of top-rank NN
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Learning top-rank pairs – top-rank NN[3]
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Learning top-rank pairs – pairing

• SigNet[4]

• Concatenate two feature vectors (g and q) into a single vector
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• Learning mechanism of SigNet

Learning top-rank pairs – learning mechanism
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Learning top-rank pairs – learning mechanism

• Learning mechanism of learning top-rank pairs
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Experimental setting – data and evaluation

• Datasets used in this experiment
• BHSig260 dataset[5]

• BHSig-B                                      BHSig-H

• Evaluation criteria
• pos@top: (absolute positives)/(all true positives)

• Accuracy: the maximum result of 0.5×(TPR+TNR)

• AUC: Area under the curve

• FAR: false acceptance rate

• FRR: false rejection rate
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Results and analysis – ROC curves
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• The ROC curves show our method achieves better pos@top on 
both dataset BHSig-B and BHSig-H

(a) ROC curve of BHSig-B (b) ROC curve of BHSig-H



Results and analysis – quantitative evaluation

Dataset Approaches pos@top(↑) Accuracy(↑) AUC(↑) FAR(↓) FRR(↓)

BHSig-B
Ours 0.283 0.806 0.889 0.222 0.222

SigNet 0.000 0.756 0.847 0.246 0.247

BHSig-H
Ours 0.114 0.836 0.908 0.179 0.178

SigNet 0.000 0.817 0.891 0.192 0.192
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• On both dataset BHSig-B and BHSig-H, our method achieves 
better performance on each evaluation criteria

• SigNet has 0 pos@top on both datasets!?



Results and analysis – histograms(ours)

• Rank scores of signature pairs show in histograms on both 
datasets

(a) Ours on BHSig-B
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Results and analysis – histograms(SigNet)

• Distances of signature pairs show in histograms on both 
datasets
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Results and analysis – some examples(BHSig-B)
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(b) Non-absolute top (Genuine, Genuine) pairs of BHSig-B

(c) (Genuine, Forgery) pairs of BHSig-B

(a) Absolute top (Genuine, Genuine) pairs of BHSig-B
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Conclusion

• A novel method: learning top-rank pairs
• Pair-based top-rank learning

• Increasing reliability of performance on signature verification

• Experiments on two signature proved the efficiency of our 
method
• Achieved higher pos@top indeed

• Convincing examples
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THANK YOU !
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Results and analysis – top-ranked negative
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• Ours: Learning top-rank pairs
• To maximize the number of absolute Genuine signature pairs

• Putting the rank scores on an axis
• There are more absolute Genuine pairs than metric learning!

• More absolute Genuine pairs = Higher reliability

Purpose – higher reliability
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