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Introduction Our Architecture Experiments Conclusion

State of the Art: From RNN to Transformer

Usual approaches: Convolutional Recurrent Neural Networks (CRNN)
Convolutional layers + recurrent layers

⇒ Lack of parallelism / slow training speed

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]
Composed of convolutional layers, no recurrent layers

⇒ Faster training speed, but might be hard to learn long-range contexts

Multi-Head Attention (Transformer layers) [Vaswani et al. 2017]
Able to learn long-range context
Strong parallelism

⇒ Good alternative but require a lot of training data
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Introduction Our Architecture Experiments Conclusion

Transformer for Handwritten Text Recognition
Existing approaches [Kang et al. 2020, Singh et al. 2021]

Transformer layers to model the language
Big architectures to obtain state-of-the-art results

Problem
Require a lot of data to be trained
Few annotated data in handwritten recognition (10k lines)
⇒ Additional data to perform well

Our proposition
Light architecture to perform well with few data
Hybrid loss to ease the training

Original Transformer
[Vaswani et al. 2017]
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Our Light Transformer Architecture
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A Light Architecture
How to make a smaller Transformer
Convolutional backbone
Big backbone (i.e. ResNet18)

⇒ Only 5 convolutional layers
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A Light Architecture
How to make a smaller Transformer
Convolutional backbone
Big backbone (i.e. ResNet18)
⇒ Only 5 convolutional layers

Neurons in Transformer layers
Up to 1,024 neurons
⇒ Only 256 neurons

In total
100M parameters
⇒ 6.9M parameters

Potential benefits
Faster to train compared to other
Transformer-based architecture
Does not require additional data to
be trained efficiently
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Hybrid Loss

Image Transformer
Encoder

Transformer
Decoder

CNN

Ground Truth
Shifted right

CTC Loss

CE Loss

L = λ · LCTC + (1− λ) · LCE

Hybrid loss [Michael et al. 2019]
Connectionist Temporal Classification (CTC) for the Encoder
Cross Entropy (CE) for the Decoder

Potential benefits
Help to train deep layers with gradients from both losses
Faster convergence
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Outline of the Experiments

Experiments presented
1 Ablation Study

Transformer layers
Decoder

2 Architecture Size
3 Hybrid loss
4 Comparison with state-of-the-art methods

Results with and without synthetic data (to compare fairly with others)
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Data used

Real data, without additional data
IAM dataset (modern English, 10,363 lines, 76k words)
Data augmentation techniques

Our synthetic data (to compare with other transformers)
Articles from Wikipedia (21,350 articles, 66M words)
Handwritten fonts (32 fonts)
Random deformations / augmentations
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Ablation Study: Transformer Layers instead of Recurrent Layers
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Ablation Study: Decoder
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Architecture # params. IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

CRNN (Baseline) 1.7M 6.14 23.26 5.66 21.62
Our Encoder only 3.2M 5.93 22.82 6.15 24.02
Our Light Transformer 6.9M 5.70 18.86 4.76 16.31

With the decoder
Ability to model the language

Lower error rates
Stronger impact on the WER

Benefits more from synthetic
data

More data to learn the
language
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Benefits of Using a Light Architecture

Different sizes of our architecture
Light Transformer: 6.9M params.
Large Transformer: 28M params.

Architecture IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

Our Light Transformer 5.70 18.86 4.76 16.31
Our Large Transformer 5.79 19.67 4.87 17.67

Our light architecture is
competitive
Our light architecture
might be trained faster

10/13 Killian Barrere Light Transformer for Handwritten Text Recognition



Introduction Our Architecture Experiments Conclusion

Benefits of Using a Light Architecture

Different sizes of our architecture
Light Transformer: 6.9M params.
Large Transformer: 28M params.

Architecture IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

Our Light Transformer 5.70 18.86 4.76 16.31
Our Large Transformer 5.79 19.67 4.87 17.67

Our light architecture is
competitive

Our light architecture
might be trained faster

10/13 Killian Barrere Light Transformer for Handwritten Text Recognition



Introduction Our Architecture Experiments Conclusion

Benefits of Using a Light Architecture

Different sizes of our architecture
Light Transformer: 6.9M params.
Large Transformer: 28M params.

Architecture IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

Our Light Transformer 5.70 18.86 4.76 16.31
Our Large Transformer 5.79 19.67 4.87 17.67

Our light architecture is
competitive
Our light architecture
might be trained faster

10/13 Killian Barrere Light Transformer for Handwritten Text Recognition



Introduction Our Architecture Experiments Conclusion

Interest of the Hybrid Loss

CE only: Cross-Entropy loss after
the decoder
Hybrid: CTC after the encoder
and CE after the decoder

Loss
Function(s)

IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

CE only 10.29 26.36
Hybrid (CTC + CE) 5.70 18.86

Faster convergence
Crucial with few data
Important with synthetic
data
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Loss
Function(s)

IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

CE only 10.29 26.36 6.76 19.62
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Faster convergence
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data
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Comparison with the state of the art

Model Encoder # params. IAM IAM + Synth. Data
CER (%) CER (%)

CRNN + LSTM [Michael et al. 2019] 5.24

FCN [Yousef et al. 2020] 3.4M 4.9

VAN (line level) [Coquenet et al. 2022] 1.7M 4.95

Transformer [Kang et al. 2020] 100M 7.62 4.67

FPHR Transformer [Singh et al. 2021] 28M 6.5

Forward Transformer [Wick et al. 2021] 13M 6.03
Bidi. Transformer [Wick et al. 2021] 27M 5.67

Our Light Transformer-based 6.9M 5.70 4.76
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Compared with other Transformers:
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Forward Transformer [Wick et al. 2021] 13M 6.03
Bidi. Transformer [Wick et al. 2021] 27M 5.67

Our Light Transformer-based 6.9M 5.70 4.76

Low error rates
without additional data
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State-of-the-art results
with synthetic data
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Comparison with the state of the art

Model Encoder # params. IAM IAM + Synth. Data
CER (%) CER (%)
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Forward Transformer [Wick et al. 2021] 13M 6.03
Bidi. Transformer [Wick et al. 2021] 27M 5.67

Our Light Transformer-based 6.9M 5.70 4.76

While being
a light Transformer
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Conclusion

Our Contribution
A light Transformer architecture, trained with a hybrid loss

Faster to train than other Transformers
Good results without additional data
State-of-the-art results with synthetic data

Future Works: Historical Documents
Ability of Transformers to model the language is crucial
Very few annotated data ⇒ our light Transformer architecture
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