A Light Transformer-Based Architecture for Handwritten Text Recognition

Killian Barrere Yann Soullard Aurélie Lemaitre Bertrand Coüasnon

Document Analysis Systems (DAS), La Rochelle 24th May 2022

IntuiDoc research team, Univ. Rennes, CNRS, IRISA, France

Introd ●0	uction Our Archi 000		Experiments 0000000	Conclusion 0
Sta	ate of the Art: From RN	N to Transformer		
	Usual approaches: Convolutior	al Recurrent Neural Net	works (CRNN)	
	• Convolutional layers + ree	current layers		
	\Rightarrow Lack of parallelism / slow	raining speed		

	\Rightarrow Lack of parallelism / slow training s	peed	
	• Convolutional layers + recurrent lay	rers	
	Usual approaches: Convolutional Recurre	ent Neural Networks (CRNN)	
S	ate of the Art: From RNN to Tra	ansformer	
•0	000 Our Architecture	0000000	o

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]

• Composed of convolutional layers, no recurrent layers

 \Rightarrow Faster training speed, but might be hard to learn long-range contexts

	\Rightarrow Lack of parallelism / slow training sp	eed	
	• Convolutional layers + recurrent laye		
	Usual approaches: Convolutional Recurren	nt Neural Networks (CRNN)	
S	ate of the Art: From RNN to Tra	nsformer	
•0	000	0000000	0

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]

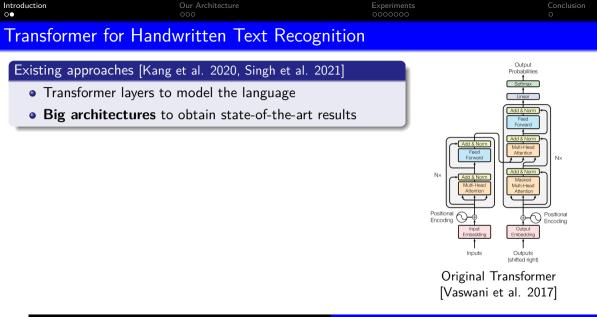
• Composed of convolutional layers, no recurrent layers

 \Rightarrow Faster training speed, but might be hard to learn long-range contexts

Multi-Head Attention (Transformer layers) [Vaswani et al. 2017]

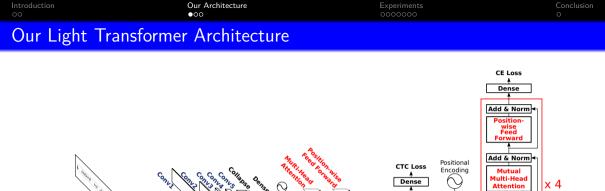
- Able to learn long-range context
- Strong parallelism
- \Rightarrow Good alternative but require a lot of training data

Introduction



Introduction ⊙●	Our Architecture	Experiments 0000000	Conclus O	
Transformer for H	andwritten Text R	ecognition		
• Transformer laye	Kang et al. 2020, Singh e rs to model the languag es to obtain state-of-the	e	Output Probabilities Softmax Linear Add 5 Norm Food	
• Few annotated d	data to be trained lata in handwritten reco ata to perform well	gnition (10k lines)	Nx Positional Encoding Prot	
			Criginal Transformer [Vaswani et al. 2017]	

Introduction ⊙●	Our Architecture 000	Experimen 0000000		Conclusion O
Transformer for Hand	lwritten Text Re	cognition		
Existing approaches [KangTransformer layers toBig architectures to	o model the language	2	Out; Probab Softmer Lister Foo	
ProblemRequire a lot of date		witting (101, lines)	Add & Norm Add & Norm Feed Forward Nx Add & Norm Multi-Med Add & Norm Multi-Med Multi-Med Add & Norm	Nx Norm
 Few annotated data ⇒ Additional data 	-	nition (10k lines)	Positional Encoding	Positional Encoding
Our proposition			Inputs Outputs (shifted	
Light architectureHybrid loss to ease t	-	h few data	Original Transfo [Vaswani et al.	



128

"<sos>A MOVE to stop Mr. Gaitskell from" -

Target Transcription (shifted right)

when training

with teacher forcing

Positional

Encoding

Characters already predicted

when testing / training

without teacher forcing

Transformer

Encoder Lavers

x 4

Character

Embedding

Add & Norm

Self

Multi-Head

Attention

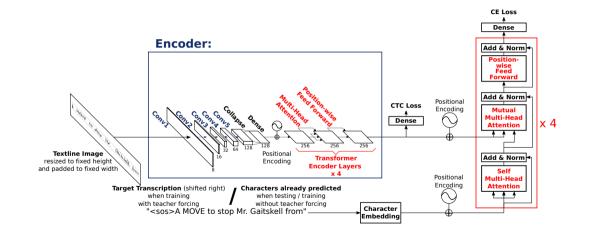
Positional

Encoding

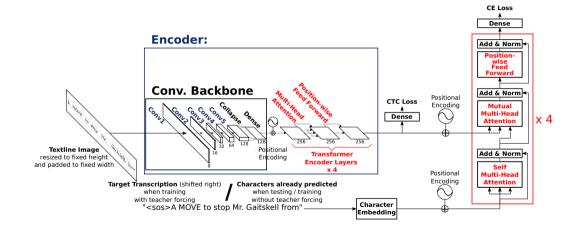
Textline Image

resized to fixed height

and padded to fixed width



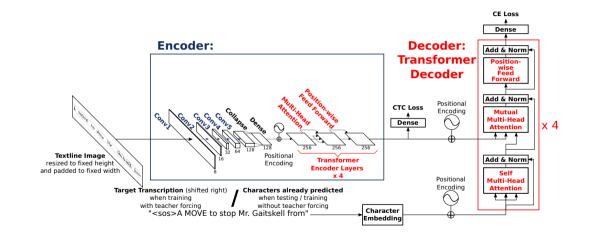
Our Light Transformer	· • • • • • • • • • • • • • • • • • • •		
	•00		
Introduction	Our Architecture	Experiments	Conclusion



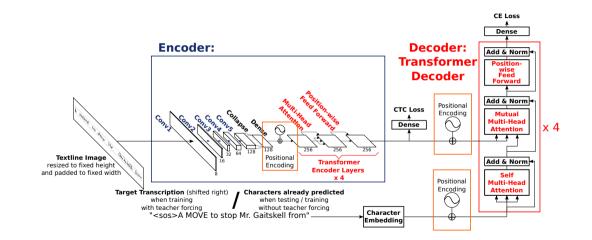
Introduction	Our Architecture	Experiments	Conclusion
00	•00	0000000	0



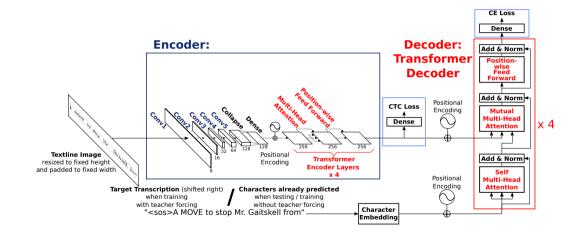
Introduction	Our Architecture	Experiments	Conclusion
00	●00	0000000	O
Our Light Tra	nsformer Architecture		



Introduction	Our Architecture	Experiments	Conclusion
00	●00	0000000	O
Our Light Tra	nsformer Architecture		



	● 00		
Introduction	Our Architecture	Experiments	Conclusion

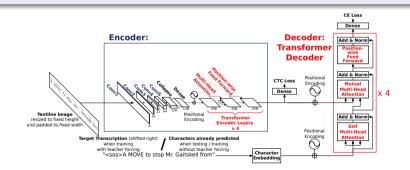


A Light Architecture	Introduction	Our Architecture	Experiments	Conclusion
	00	○●○	0000000	O
	A Light Archite	ecture		

How to make a smaller Transformer

Convolutional backbone

Big backbone (i.e. ResNet18)

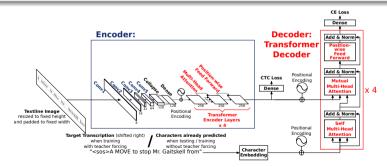


Introduction 00	Our Architecture 000	Experiments 0000000	Conclusion O
A Light Architecture			

How to make a smaller Transformer

Convolutional backbone Big backbone (i.e. ResNet18)

 \Rightarrow Only 5 convolutional layers



Introdu 00		ur Architecture ●0		xperiments 200000	Conclusion O
Αl	ight Architecture				
	How to make a smaller T	ransformer			
	Convolutional backbon	е	Neurons i	n Transformer layer	s
	Big backbone (i.e. ResN	et18)	Up to 1,02	24 neurons	
	\Rightarrow Only 5 convolutional	layers			
	-	ranscription (shifted right) Charact when training wh	stional reading training recording training recording training recording training recording training recording training recording training	Encoding	

00	000	experiments 0000000	o
A Ligh	nt Architecture		
How	w to make a smaller Transformer		
Big	p nvolutional backbone g backbone (i.e. ResNet18) Only 5 convolutional layers	Neurons in Transformer layers Up to 1,024 neurons \Rightarrow Only 256 neurons	
	Excision langer rescale to fixed width and padded to fixed width Target Transcription Lichter right) Character a loc when training with teator forcing "< sos>A MOVE to stop Mr. Gaitskell fro	g / training ther forcing	

luction	000 Architecture 000	experiments	o
Light Archited	ture		
How to make a s	maller Transformer		
Convolutional	backbone	Neurons in Transformer layers	
Big backbone (i	.e. ResNet18)	Up to 1,024 neurons	
\Rightarrow Only 5 convo	olutional layers	\Rightarrow Only 256 neurons	
In total			
100M parameter	s		

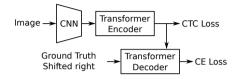
o
J

00		0000000	0
A Light Architecture			
	How to make a smaller Transformer		
	Convolutional backbone	Neurons in Transformer layers	
	Big backbone (i.e. ResNet18)	Up to 1,024 neurons	
	\Rightarrow Only 5 convolutional layers	\Rightarrow Only 256 neurons	
	In total	Potential benefits	
	100M parameters	• Faster to train compared to other	

 \Rightarrow 6.9M parameters

- Faster to train compared to other Transformer-based architecture
- Does not require additional data to be trained efficiently

Introduction	Our Architecture	Experiments	Conclusion
00		0000000	O
Hybrid Loss			

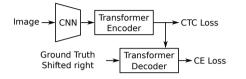


$$\mathcal{L} = \lambda \cdot \mathcal{L}_{\textit{CTC}} + (1 - \lambda) \cdot \mathcal{L}_{\textit{CE}}$$

Hybrid loss [Michael et al. 2019]

- Connectionist Temporal Classification (CTC) for the Encoder
- Cross Entropy (CE) for the Decoder

Introduction	Our Architecture	Experiments	Conclusion
00	000		
Hybrid Loss			
TYDNU LOSS			



$$\mathcal{L} = \lambda \cdot \mathcal{L}_{\textit{CTC}} + (1 - \lambda) \cdot \mathcal{L}_{\textit{CE}}$$

Hybrid loss [Michael et al. 2019]

- Connectionist Temporal Classification (CTC) for the Encoder
- Cross Entropy (CE) for the Decoder

Potential benefits

- Help to train deep layers with gradients from both losses
- Faster convergence

Introduction	Our Architecture	Experiments	Conclusion
00	000	●000000	O
Outline of the E	xperiments		

Experiments presented

- Ablation Study
 - Transformer layers
 - Decoder
- Architecture Size
- Hybrid loss
- Omparison with state-of-the-art methods

Introduction	Our Architecture	Experiments	Conclusion
00	000	000000	
Outline of the	Experiments		

Experiments presented

- Ablation Study
 - Transformer layers
 - Decoder
- Architecture Size
- O Hybrid loss
- Omparison with state-of-the-art methods

• Results with and without synthetic data (to compare fairly with others)

Introduction	Our Architecture	Experiments	Conclusion
00	000	o●ooooo	0
Data used			

Real data, without additional data

- IAM dataset (modern English, 10,363 lines, 76k words)
- Data augmentation techniques

a sit earthbourd foright, Front. I've got a queer there have been only two occasions on

OO	Our Architecture	Experiments 000000	O
Data used			
Destate the State	an a data ta sa babara		

Real data, without additional data

G

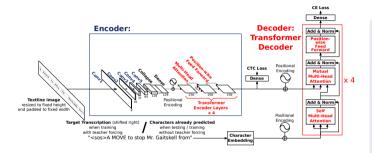
- IAM dataset (modern English, 10,363 lines, 76k words)
- Data augmentation techniques 5:4

Our synthetic data (to compare with other transformers)

- Articles from Wikipedia (21,350 articles, 66M words)
- Handwritten fonts (32 fonts)
- Random deformations / augmentations

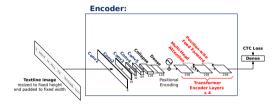
OU

Introduction 00	Our Architecture 000	Experiments 000000	Conclusion O
Ablation Study:	Transformer Layers i	nstead of Recurrent Layers	5



Without the decoder

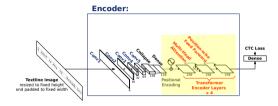
Introduction	Our Architecture	Experiments	Conclusion



Without the decoder

		estand of Document Low	
Introduction	Our Architecture	Experiments	Conclusion

Ablation Study: Transformer Layers instead of Recurrent Layers

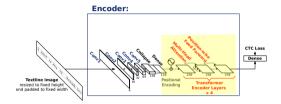


Without the decoder

 CRNN with Transformer instead of recurrent layers

	— — — — — —	stand of Decument Low	
Introduction	Our Architecture	Experiments	Conclusion

Ablation Study: Transformer Layers instead of Recurrent Layers



Architecture	# params CE	14	١M	IAM + S	ynth. Data
		CER (%)	WER (%)	CER (%)	WER (%)
CRNN (Baseline) Our Encoder only	1.7M 3.2M	6.14 5.93	23.26 22.82		

Without the decoder

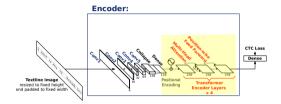
 CRNN with Transformer instead of recurrent layers

$\textbf{Recurrent} \Rightarrow \textbf{Transformer}$

- More parameters
- Lower error rates
 - Better context

	— — — — — —	stand of Decument Low	
Introduction	Our Architecture	Experiments	Conclusion

Ablation Study: Transformer Layers instead of Recurrent Layers



Architecture	# params Cl	IAM		IAM+Synth. Data	
		CER (%)	WER (%)	CER (%)	WER (%)
CRNN (Baseline) Our Encoder only	1.7M 3.2M	6.14 5.93	23.26 22.82	5.66 6.15	21.62 24.02

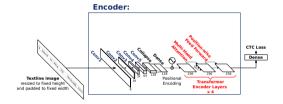
Without the decoder

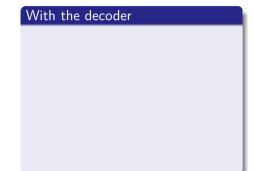
 CRNN with Transformer instead of recurrent layers

$Recurrent \Rightarrow Transformer$

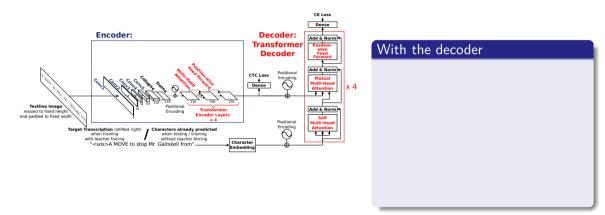
- More parameters
- Lower error rates
 - Better context
- Worse with synthetic data (may not generalize well)

Introduction	Our Architecture	Experiments	Conclusion
00	000	0000000	O
Ablation Study	: Decoder		

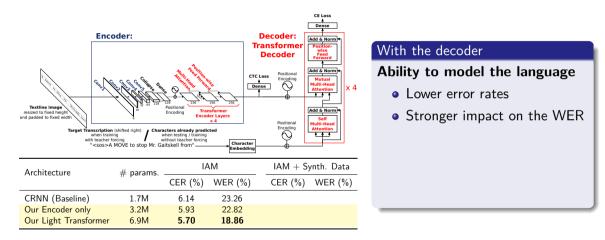




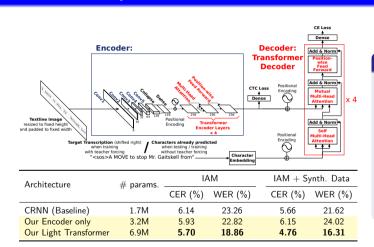
Introduction 00	Our Architecture	Experiments	Conclusion
Ablation Study:			



Introduction	Our Architecture	Experiments	Conclusion
00	000	000●000	O
Ablation Study	: Decoder		



Introduction	Our Architecture	Experiments	Conclusion
00		0000000	O
Ablation Study:	Decoder		



With the decoder

Ability to model the language

- Lower error rates
- Stronger impact on the WER

Benefits more from synthetic data

• More data to learn the language

Densfire of Hoten of Links Analytic struct		
Introduction Our Architecture 00 000	Experiments 0000000	Conclusion O

Benefits of Using a Light Architecture

Different sizes of our architecture

- Light Transformer: 6.9M params.
- Large Transformer: 28M params.

Introduction	Our Architecture	Experiments	Conclusion

Benefits of Using a Light Architecture

Different sizes of our architecture

- Light Transformer: 6.9M params.
- Large Transformer: 28M params.

Architecture	IAM		IAM + Synth. Data	
, a cintecture	CER (%) WER (%)		CER (%)	WER (%)
Our Light Transformer	5.70	18.86	4.76	16.31
Our Large Transformer	5.79	19.67	4.87	17.67

• Our light architecture is **competitive**

Ponofite of Using a Light Architecture	
Introduction Our Architecture Experiments oo ooo oooo●oo	Conclusion O

Benefits of Using a Light Architecture

Different sizes of our architecture

- Light Transformer: 6.9M params.
- Large Transformer: 28M params.

Architecture	IAM		IAM + Synth. Data	
/ i entecture	CER (%) WER (%)		CER (%)	WER (%)
Our Light Transformer	5.70	18.86	4.76	16.31
Our Large Transformer	5.79	19.67	4.87	17.67

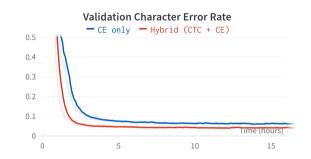
- Our light architecture is **competitive**
- Our light architecture might be **trained faster**

Introduction	Our Architecture	Experiments	Conclusion
00	000	00000€0	O
Interest of the Hybr	rid Loss		

- **CE only**: Cross-Entropy loss after the decoder
- Hybrid: CTC after the encoder and CE after the decoder

Introduction	Our Architecture	Experiments	Conclusion
00	000	00000€0	O
Interest of the H	lybrid Loss		

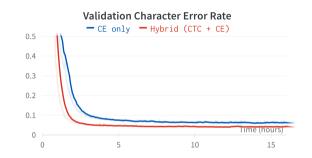
- **CE only**: Cross-Entropy loss after the decoder
- Hybrid: CTC after the encoder and CE after the decoder



• Faster convergence

Introduction	Our Architecture	Experiments	Conclusion
00		00000€0	O
Interest of the I	Hybrid Loss		

- **CE only**: Cross-Entropy loss after the decoder
- Hybrid: CTC after the encoder and CE after the decoder



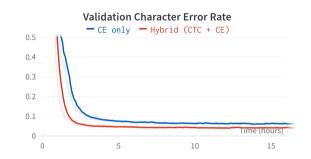
Loss	IAM		$IAM + S_{2}$	/nth. Data
Function(s)	CER (%)	WER (%)	CER (%)	WER (%)
CE only	10.29	26.36		
Hybrid (CTC $+$ CE)	5.70	18.86		

- Faster convergence
- Crucial with few data

Introduction	Our Architecture	Experiments	Conclusion
00		00000€0	O
Interest of the I	Hybrid Loss		

Killian Barrere

- **CE only**: Cross-Entropy loss after the decoder
- Hybrid: CTC after the encoder and CE after the decoder



Loss	IAM CER (%) WER (%)		IAM + Synth. Data	
Function(s)			CER (%)	WER (%)
CE only	10.29	26.36	6.76	19.62
Hybrid (CTC + CE)	5.70	18.86	4.76	16.31

- Faster convergence
- Crucial with few data
- Important with synthetic data

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	nparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021]	13M	6.03	
	Bidi. Transformer [Wick et al. 2021]	27M	5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	nparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CPNN - LETM [Michael at al 2019]		5.24	
	Compared with other Transformers:	3.4M	4.9	
		1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	mparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		F 04	
	FCN [Yousef et al. 2020]	3 Low error rates without additional data		
	VAN (line level) [Coquenet et al. 2022]	1.		uutu
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Killian Barrere Light Transformer for Handwritten Text Recognition

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	mparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	ate-of-the-art results with synthetic data
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	June 1 Synthetic Lata
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Killian Barrere Light Transformer for Handwritten Text Recognition

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	nparison with the state of the art	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	EVIN LYOUSEL ET AL ZUZUI	While being ht Transforn	4.9	
	VAN (line level) [Coquenet et al. 20		4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021] Bidi. Transformer [Wick et al. 2021]	13M 27M	6.03 5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Killian Barrere Light Transformer for Handwritten Text Recognition

Introdu 00	ction Our Architecture		Experiments 000000●	Conclusion O
Cor	mparison with the state of the ar	t		
	Model Encoder	# params.	IAM CER (%)	IAM + Synth. Data CER (%)
	CRNN + LSTM [Michael et al. 2019]		5.24	
	FCN [Yousef et al. 2020]	3.4M	4.9	
	VAN (line level) [Coquenet et al. 2022]	1.7M	4.95	
	Transformer [Kang et al. 2020]	100M	7.62	4.67
	FPHR Transformer [Singh et al. 2021]	28M		6.5
	Forward Transformer [Wick et al. 2021]	13M	6.03	
	Bidi. Transformer [Wick et al. 2021]	27M	5.67	
	Our Light Transformer-based	6.9M	5.70	4.76

Introduction	Our Architecture	Experiments	Conclusion
			•
Conclusion			

Our Contribution

A light Transformer architecture, trained with a hybrid loss

- Faster to train than other Transformers
- Good results without additional data
- State-of-the-art results with synthetic data

Introduction	Our Architecture	Experiments	Conclusion
			•
Conclusion			

Our Contribution

A light Transformer architecture, trained with a hybrid loss

- Faster to train than other Transformers
- Good results without additional data
- State-of-the-art results with synthetic data

Future Works: Historical Documents

- Ability of Transformers to model the language is crucial
- Very few annotated data \Rightarrow our light Transformer architecture