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Introduction
[ 1}

State of the Art: From RNN to Transformer

Usual approaches: Convolutional Recurrent Neural Networks (CRNN)

@ Convolutional layers + recurrent layers

= Lack of parallelism / slow training speed
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State of the Art: From RNN to Transformer

Usual approaches: Convolutional Recurrent Neural Networks (CRNN)
@ Convolutional layers + recurrent layers

= Lack of parallelism / slow training speed

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]

@ Composed of convolutional layers, no recurrent layers

= Faster training speed, but might be hard to learn long-range contexts
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Introduction
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State of the Art: From RNN to Transformer

Usual approaches: Convolutional Recurrent Neural Networks (CRNN)
@ Convolutional layers + recurrent layers

= Lack of parallelism / slow training speed

Fully Convolutional Networks [Ingle et al. 2019, Yousef et al. 2020, Coquenet et al. 2021]

@ Composed of convolutional layers, no recurrent layers

= Faster training speed, but might be hard to learn long-range contexts

Multi-Head Attention (Transformer layers) [Vaswani et al. 2017]

@ Able to learn long-range context
@ Strong parallelism

= Good alternative but require a lot of training data
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oce

Transformer for Handwritten Text Recognition

Output

Existing approaches [Kang et al. 2020, Singh et al. 2021] Prbabites

@ Transformer layers to model the language

Feed
Forward

Muiti-Head
Aftention

e Big architectures to obtain state-of-the-art results

Add & Norm

Feed
Forward

(CAdd & Norm )
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Multi-Head Multi-Head
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J
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Original Transformer
[Vaswani et al. 2017]
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Introduction
oce

Transformer for Handwritten Text Recognition

Output

Existing approaches [Kang et al. 2020, Singh et al. 2021] Probabites

@ Transformer layers to model the language

(Linear )
(Add & Norm
Feed
Forward
(CAdd s Norm )

Muiti-Head
Aftention

e Big architectures to obtain state-of-the-art results

Add & Norm

Feed
Forward

Problem

Nx

@ Require a lot of data to be trained

Masked
Multi-Head Multi-Head
o Few annotated data in handwritten recognition (10k lines) | | R
J
o = Additional data to perform well Ercoding Ercodng
Embeaing Embasdrg
Inputs Outputs
(shifted right)

Original Transformer
[Vaswani et al. 2017]
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Introduction
oce

Transformer for Handwritten Text Recognition

Output
Probabilties

Existing approaches [Kang et al. 2020, Singh et al. 2021]

‘Add & Norm

Feed
Forward

Muiti-Head
Aftention

@ Transformer layers to model the language
e Big architectures to obtain state-of-the-art results

@ Require a lot of data to be trained o

o Few annotated data in handwritten recognition (10k lines)

Add & Norm
Feed
Forward

Add & Norm
Mut-Head
Adtention

1 J

Masked
Multi-Head
Attention

t

Positional Positional

o = Additional data to perform well Encoding 2~ Encoding
e e
Our proposition iputs s

o Light architecture to perform well with few data Original Transformer
[Vaswani et al. 2017]

@ Hybrid loss to ease the training
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Our Architecture
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Our Light Transformer Architecture
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Our Light Transformer Architecture
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Our Architecture
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Our Light Transformer Architecture
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Our Light Transformer Architecture
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Our Light Transformer Architecture
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A Light Architecture
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A Light Architecture
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A Light Architecture

Our Architecture
oeo

How to make a smaller Transformer

Convolutional backbone

= Only 5 convolutional layers

Neurons in Transformer layers
Up to 1,024 neurons

Textline Image
resized to fixed height
and padded to fixed width

Target Transcription (shifted right)

4/13

Encoder:

Positional
Encoding

CE Loss

Position-
wise
Feed

Forward

Mutual
ad
Attention

when training /
with teacher forcing

"<sos>A MOVE to stop Mr. Gaitskell from"

without teacher forcing

Characters already predicted
when testing / training

Decoder:
Transformer|
Decoder
CTC Loss E‘:‘i‘;‘;’:;
s
T T
7%
Transformer
Encoder Layers
x4 Positional
Encoding
Character
&

Embedding|

Light Transformer for Hand

ten Text Recognition




A Light Architecture

Our Architecture
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How to make a smaller Transformer

Convolutional backbone

= Only 5 convolutional layers

Neurons in Transformer layers

Yp-te1,024-neurons

= Only 256 neurons
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resized to fixed height
and padded to fixed width

Target Transcription (shifted right)
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Our Architecture
oeo

A Light Architecture

How to make a smaller Transformer

Convolutional backbone Neurons in Transformer layers
= Only 5 convolutional layers = Only 256 neurons

100M parameters
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Our Architecture
oeo

A Light Architecture

How to make a smaller Transformer

Convolutional backbone Neurons in Transformer layers
= Only 5 convolutional layers = Only 256 neurons

100M-parameters

= 6.9M parameters
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Our Architecture
oeo

A Light Architecture

How to make a smaller Transformer

Convolutional backbone Neurons in Transformer layers
= Only 5 convolutional layers = Only 256 neurons

Potential benefits

100M-parameters o Faster to train compared to other

= 6.9M parameters Transformer-based architecture

@ Does not require additional data to
be trained efficiently
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Our Architecture
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Hybrid Loss

Image —»IE"

Ground Truth
Shifted right

Transformer CTC Loss
Encoder EZ)"£CTC+(1_)\)‘£CE
Transformer | > CE Loss
Decoder

Hybrid loss [Michael et al. 2019]

@ Connectionist Temporal Classification (CTC) for the Encoder
@ Cross Entropy (CE) for the Decoder
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Our Architecture

ooe

Hybrid Loss

CTC Loss

Transformer
Image —|
9 @‘ Encoder

L=\ Lcrc+(1-N)-Lce

Ground Truth __ | Transformer
Shifted right Decoder

> CE Loss

Hybrid loss [Michael et al. 2019]

@ Connectionist Temporal Classification (CTC) for the Encoder
@ Cross Entropy (CE) for the Decoder

Potential benefits

@ Help to train deep layers with gradients from both losses

@ Faster convergence
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Experiments
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Outline of the Experiments

Experiments presented
© Ablation Study

e Transformer layers
e Decoder

@ Architecture Size
© Hybrid loss
@ Comparison with state-of-the-art methods
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Experiments
[ Ielelololele}

Outline of the Experiments

Experiments presented
© Ablation Study

e Transformer layers
e Decoder

@ Architecture Size
© Hybrid loss

@ Comparison with state-of-the-art methods

@ Results with and without synthetic data (to compare fairly with others) ]
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Experiments
0®00000

Data used

Real data, without additional data
e |AM dataset (modern English, 10,363 lines, 76k words)
@ Data augmentation techniques
@ o4 tardhbood /1944?(»0",. Tout, [ve gof = Joeer
+\~Q)v*€, W Q T IIN O\«\Q‘/ +wo OLC,OV&\QM'\ O\
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Experiments
0®00000

Data used

Real data, without additional data
e |AM dataset (modern English, 10,363 lines, 76k words)
@ Data augmentation techniques

a o tar dhiood /19‘747(‘\7",- Tout, [ve 3@“{ 4 Jodes
tlare Lave @ eein oy 1wo ocweA oMy o

Our synthetic data (to compare with other transformers)
o Articles from Wikipedia (21,350 articles, 66M words)
@ Handwritten fonts (32 fonts)
e Random deformations / augmentations

{\a;fb\é Joow (Puntain as lovtq drawn skiors, and in vecont
ﬁws-\'iwhu. T sondts .L}g.md«w oMy (30,000



Experiments
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Ablation Study: Transformer Layers instead of Recurrent Layers

CE Loss

Encoder: Decoder: Without the decoder
Transformer
Decoder
2%
4, e %,
% So %, Positional
Vr,o:/,& 53 CTCLoss  oding
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when training when testing / training
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Experiments
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Ablation Study: Transformer Layers instead of Recurrent Layers

Encoder: Without the decoder

4
A’G %@/”o
Y %, %, Y %, CTC Loss
@ G o, %
0, ‘0, ‘a
s%’ e, KN [Dense |
Textline Image Positional 2 v—/
resized to fixed height Encoding Transformer

Encoder Layers

and padded to fixed width
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Experiments
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Ablation Study: Transformer Layers instead of Recurrent Layers

Encoder: Without the decoder

@ CRNN with Transformer
instead of recurrent layers

Textline Image

resized to fixed height
and padded to fixed width
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Experiments
[eeX Yololele}

Ablation Study: Transformer Layers instead of Recurrent Layers

Encoder: Without the decoder
@ CRNN with Transformer
6,00 o instead of recurrent layers
s g s Req e ? [(Dense ]
et \%m Recurrent = Transformer

@ More parameters
@ Lower error rates

o Better context
Architecture # params. IAM IAM + Synth. Data
CER (%) WER (%) CER (%) WER (%)
CRNN (Baseline) 1.7M 6.14 23.26
Our Encoder only 3.2M 5.93 22.82
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Experiments
[eeX Yololele}

Ablation Study: Transformer Layers instead of Recurrent Layers

Textline Image
resized to fixed height
and padded to fixed width

Positional
Encoding

Encoder: Without the decoder
@ CRNN with Transformer
St 8, instead of recurrent layers
\%%“ : Recurrent = Transformer

@ More parameters
@ Lower error rates

o Better context
Architecture # params. IAM IAM + Synth. Data . .
CER (%) WER (%)  CER (%) WER (%) @ Worse with synthetic data
CRNM (Baseline) — 1.7M ol 23.26 5.66 21.62 (may not generalize well)
Our Encoder only 3.2M 5.93 22.82 6.15 24.02
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Ablation Study: Decoder

Encoder:

With decoder

5%
'A%, CTC Loss

%, %
% % e
% ot

Textline Image Positional

resized to fixed height Encoding Transformer
and padded to fixed width Encoder Layers
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Ablation Study: Decoder

Encoder:

Textline Image
resized to fixed height
and padded to fixed width

Positional

Encoding Transformer

xa

Encoder Layers

Target Transcription (shifted right)
when training
with teacher forcing

"<s0s>A MOVE to stop Mr. Gaitskell from"

9/13

/

Characters already predicted
hen testing / training
without teacher forcing

CE Loss
[Dense ]
Decoder:
Transformer
Decoder Forward
Positional
cTcLoss ool Mutaal
Multi-Head
privesi
&
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Positional
Encoding

Character
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Ablation Study: Decoder

Experiments

000e000

Encoder: Decoder:
Transformer| [Fosition-
Decoder || s,
%, o Positional
U, aln, CTcLoss oSt e
"%,

CE Loss

Multi-Head
Attention

&
WS e S e
Textline Image Positional
resized to fixed height EooonTransiormer
and padded to fixed width Encoder Layers
x4 Positional
Target Transcription (shifted right) y Characters already predicted Encoding
when training / when testing / training
with teacher forcing without teacher forcing
"<s0s>A MOVE to stop Mr. Gaitskell from" onaracter &
mbedding
. IAM IAM + Synth. Data
Architecture # params. Y
CER (%) WER (%) CER (%) WER (%)
CRNN (Baseline) 1.7M 6.14 23.26
Our Encoder only 3.2M 5.93 22.82
Our Light Transformer 6.9M 5.70 18.86

With the decoder

Ability to model the language

@ Lower error rates

@ Stronger impact on the WER
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Ablation Study: Decoder

CE Loss

Encoder: Decoder:
Transformer| [Fosition-
Decoder Forward
&%
%, S0 Positional
T ",
%, % e Multi-Head
QU
AN NN @ !
e e S e
Textline Image Positional
resized to fixed height Ercomy _ Transformer
and padded to fixed width Encoder Layers
x4 Positional
Target Transcription (shifted right) y Characters already predicted Encoding
when training / hen testing / training
with teacher forcing without teacher forcing
"<s0s>A MOVE to stop Mr. Gaitskell from" onaracter &
mbedding
. 1AM IAM + Synth. Data
Architecture # params. Y
CER (%) WER (%) CER (%) WER (%)
CRNN (Baseline) 1.7M 6.14 23.26 5.66 21.62
Our Encoder only 3.2M 5.93 22.82 6.15 24.02
Our Light Transformer 6.9M 5.70 18.86 4.76 16.31

With the decoder

Ability to model the language

@ Lower error rates
@ Stronger impact on the WER
Benefits more from synthetic
data
@ More data to learn the
language
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Experiments
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Benefits of Using a Light Architecture

Different sizes of our architecture
o Light Transformer: 6.9M params.

o Large Transformer: 28M params.
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Experiments
0000®00

Benefits of Using a Light Architecture

Different sizes of our architecture
o Light Transformer: 6.9M params.

o Large Transformer: 28M params.

Architecture IAM IAM + Synth. Data @ Our light architecture is
CER (%) WER (%) CER (%) WER (%) competitive

Our Light Transformer 5.70 18.86 4.76 16.31

Our Large Transformer 5.79 19.67 4.87 17.67
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Experiments
0000®00

Benefits of Using a Light Architecture

Validation Character Error Rate

s = Light Transformer = Large Transformer
Different sizes of our architecture .
. 03
o Light Transformer: 6.9M params.
0.2
@ Large Transformer: 28M params. o
Time (hours)
0
0 5 10 15
Architecture IAM IAM + Synth. Data @ Our light architecture is
CER (%) WER (%)  CER (%) WER (%) competitive
Our Light Transformer 5.70 18.86 4.76 16.31 o Our |Ight architecture
Our Large Transformer 5.79 19.67 4.87 17.67

might be trained faster
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Experiments
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Interest of the Hybrid Loss

o CE only: Cross-Entropy loss after
the decoder

@ Hybrid: CTC after the encoder
and CE after the decoder
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Experiments
00000e0

Interest of the Hybrid Loss

Validation Character Error Rate
= CE only = Hybrid (CTC + CE)

0.5
@ CE only: Cross-Entropy loss after 04
the decoder 03
o Hybrid: CTC after the encoder 02
and CE after the decoder 01
TTme (nours)
’ 0 5 10 15

o Faster convergence
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Experiments
00000e0

Interest of the Hybrid Loss

Validation Character Error Rate
= CE only = Hybrid (CTC + CE)

0.5
o CE only: Cross-Entropy loss after 04
the decoder 03
@ Hybrid: CTC after the encoder 0.2
and CE after the decoder 01
TTme (nours)
0
0 5 10 15
Loss IAM IAM + Synth. Data @ Faster convergence
Function(s) o . 0 o
CER (%) WER (%)  CER (%) WER (%) e Crucial with few data
CE only 10.29 26.36
Hybrid (CTC 4+ CE)  5.70 18.86
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Experiments
00000e0

Interest of the Hybrid Loss

Validation Character Error Rate
= CE only = Hybrid (CTC + CE)

0.5
o CE only: Cross-Entropy loss after 04
the decoder 03
o Hybrid: CTC after the encoder 02
and CE after the decoder 01
B TTme (nours)
0 5 10 15
Loss IAM IAM + Synth. Data @ Faster convergence
Function(s) o . 0 o
CER (%) WER (%)  CER (%) WER (%) e Crucial with few data
CE only 10.29 26.36 6.76 19.62 . :
Hybrid (CTC + CE) ~ 5.70  18.86 476 1631 o Important with synthetic

data
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Experiments
[eIelelolote] }

Comparison with the state of the art

Model Encoder # params. IAM IAM + Synth. Data

CER (%) CER (%)
CRNN + LSTM [Michael et al. 2019] 5.24
FCN [Yousef et al. 2020] 3.4M 4.9
VAN (line level) [Coquenet et al. 2022] 1.7M 4.95
Transformer [Kang et al. 2020] 100M 7.62 4.67
FPHR Transformer [Singh et al. 2021] 28M 6.5
Forward Transformer [Wick et al. 2021] 13M 6.03
Bidi. Transformer [Wick et al. 2021] 27TM 5.67
Our Light Transformer-based 6.9M 5.70 4.76
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Experiments
[eIelelolote] }

Comparison with the state of the art

Model Encoder # params. IAM IAM + Synth. Data

CER (%) CER (%)
19] 5.24
Compared with other Transformers: 1 3.4M 4.9
i 022]  1.7M 4.95
Transformer [Kang et al. 2020] 100M 7.62 4.67
FPHR Transformer [Singh et al. 2021] 28M 6.5
Forward Transformer [Wick et al. 2021] 13M 6.03
Bidi. Transformer [Wick et al. 2021] 2TM 5.67
Our Light Transformer-based 6.9M 5.70 4.76
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Comparison with the state of the art

Model Encoder # params. IAM IAM + Synth. Data

CER (%) CER (%)

CRNN + LSTM [Michael et al. 2019] ma
FCN [Yousef et al. 2020] §  Lowerror rates

without additional data
VAN (line level) [Coquenet et al. 2022] 1IN
Transformer [Kang et al. 2020] 100M 7.62 4.67
FPHR Transformer [Singh et al. 2021] 28M 6.5
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@ Faster to train than other Transformers
@ Good results without additional data

@ State-of-the-art results with synthetic data

Future Works: Historical Documents

@ Ability of Transformers to model the language is crucial

e Very few annotated data = our light Transformer architecture
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