Approximate Search for Keywords in Handwritten Text Images

José Andrés, Alejandro H. Toselli, Enrique Vidal

Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València, Spain

May 24th, 2022

Introduction

Andrés, Toselli and Vidal (PRHLT)

Introduction

You are here: HOME » BENTHAM » Box012 » page 407 (012_251_001) Hand: Jeremy Bentham

1 match found for "PUNISH" with a confidence of 50.9%

← PrevMatch | ← Previous | Next → | NextMatch →

1826 Munh 21 Grace. J. B. L. O. a. d. he compa for que le menuer tunon cuton de por fer a a refer nor, it qui furmant y it du tury lumas repedr en morgant des accoration anter ous ders orth he l'hum Did palse for non a come que a come from one que hom. perfra von terr lun d'argent it de peur et de it aspet content. Is an colo velo regelection mappe at I usul buch d'entr vor man / suger qual

It allows to search free text over the images!

↓ ∃ | ∃ | ↓ ∩ Q ∩

4/19

Sometimes, users don't know what to search:

- Languages evolve through time
- Inaccurate system hypotheses

This fact sometimes makes difficult querying

비는

Therefore, we are interested in queries that allow **approximate word spelling**.

A single-word approximate-spelling query is given by a base word, along with an indication that some flexibility is allowed.

Notation: *base_word~flexibility*

Types of character errors:

- Insertion: Lisabeth → Elisabeth (Insert character "E" at the beginning)
- **2** Deletion: Elissabeth \rightarrow Elisabeth (Deletion of the character "s")
- Substitution: Elissabet $h \rightarrow$ Elissabet a (substitution of "h" for "a")

The number of strings that could match the query "aptitude \sim 3" employing an alphabet of 26 characters is larger than 750000.

Instead, we can only consider the pseudo-words which appear in the PrIx (as the relevant probability of the other is clearly 0!)

How does a query on our system work? Two phases:

- Offline: Store all the pseudo-words that are found in the PrIx into a DAWG.
- **Online**: Calculate the Levenshtein distance between the query and the pseudo-words stored in the DAWG.

How do we calculate efficiently the distance between the base word query and all the pseudo-words stored in the DAWG?

Calculate the Levenshtein distance from each prefix of a pseudo-word to all the possible prefixes of the query base word.

This fact allows avoiding repeating calculations and pruning the search if possible.

Two different evaluation criterias:

- Objective: TP if a query matches a pseudo-word of a Prlx spot and one of the words of the GT transcript of the text line geometrically associated to that spot. Otherwise FP.
- Subjective: Same constraints as in the objective criteria and the word found in the GT transcripts must be semantically related to the query (base) word. Otherwise FP.

Table: Statistics of the test set defined for the Bentham experimental dataset and for the query sets Q1, Q2 and Q3, used in the evaluation experiments.

Test set		Q1	Q2	Q3
Pages	357	357	253	352
Lines	12 363	12 080	896	3 070
Running words	89 870	87 070	965	3 629
Unique words (Lexicon)	6 988	6 953	861	650

Q1: all the words that appear in the GT and are larger than 1 char.

- Q2: all the words that appear in Q1 and whose relevance probability is 0.
- Q3: set of words chosen manually by a user to assess the semantic similitude.

Table: Exact and approximate-spelling retrieval performance (mAP) for "objective" and "subjective" evaluation protocols. 95% confidence intervals are never larger than 0.03.

Query set	Q1 (6 953 words)	Q2 (861 words)	Q3 (650 words)			
Evaluation criteria	Objective	Objective	Objective	Subjective		
Exact (baseline)	0.76	0.00	0.78	0.78		
Approx. $d_0 = 1$	0.81	0.40	0.83	0.81		
Approx. $d_0 = 2$	0.85	0.67	0.84	0.65		

I DAG

Table: Dataset size, memory usage (MB) and single-query response time (milliseconds) of approximate-spelling search.

Dataset	Bentham GT	Bentham Full	Scale factor
Number of images	357	89 911	251.9
Running words	89 870	25 487 932	283.6
Number of unique pseudo-words (S)	5 951 009	37 172 635	6.2
Memory usage (MB)	192	1 602	8.3
Query time (ms) for $d_0 = 1$	0.7	1.3	1.9
Query time (ms) for $d_0 = 2$	10.5	24.7	2.4

Let's see some illustrative queries:

 $\begin{array}{l} {\sf Government}{\sim}1 \\ {\sf Judicial}{\sim}2 \end{array}$

Search interface available at: http://prhlt-kws.prhlt.upv.es/bentham/

= 900

Let's see some illustrative queries:

Government ~ 1 Judicial ~ 2 Sever ~ 2

Search interface available at: http://prhlt-kws.prhlt.upv.es/bentham/

- Approximate search **might** help the users to retrieve relevant information that wouldn't be easily found.
- It has been developed with reasonable memory consumption and time performance.

= 900

17/19

Conclusions

Approximate Search for Keywords in Handwritten Text Images

José Andrés, Alejandro H. Toselli, Enrique Vidal

Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València, Spain

May 24th, 2022

Figure: Objective and subjective TPs retrieved by "government~1". The GT for all these spots is "government". In the case a) the Prlx provides a high RP hypothesis for "government", in b) for "gevernment", in c) for "sovernment", and in d) for "governent".

Figure: Objective and subjective TPs retrieved by "judicial \sim 2". In the case a) the PrIx provides a high RP hypothesis for "judicially", in b) for "judiciary", in c) for "judicing", and in d) for "judical". subjective TPs.

Figure: Objective TPs but subjective FPs retrieved by the query "sever~2". The hypotheses with highest RP are "seven" for a) and "over" for b). Both are objective TPs because they are within $d_0 = 2$ edit distance from "sever" and match the corresponding GT words. However, both spots are subjective FPs, because they are not only different form "sever", but also semantically unrelated with it.

Data structure that eliminates prefix, interfix and suffix redundancy.

315

		Т	Α	Ρ	S
	0	1	2	3	4
Т	1	0	1	2	3
0	2	1	1	2	3
Ρ	3	2	2	1	2

		Т	Α	Ρ	S
	0	1	2	3	4
Т	1	0	1	2	3
0	2	1	1	2	3
Ρ	3	2	2	1	2
S	4	3	3	2	1

Only the last row changes!!

三日 のへの

Table: Dataset size, memory usage (MB) and single-query response time (milliseconds) of approximate-spelling search.

Dataset	Bentham GT	Bentham Full	Scale factor
Number of images	357	89 91 1	251.9
Running words	89 870	25 487 932	283.6
Number of unique pseudo-words (S)	5 951 009	37 172 635	6.2
Number of characters in S	55 654 799	355 514 400	6.4
DAWG size (edges)	3 158 261	24 818 936	7.8
Memory usage (MB)	192	1 602	8.3
Query time (ms) for $d_0=1$	0.7	1.3	1.9
Query time (ms) for $d_0 = 2$	10.5	24.7	2.4

6/7

100 200 300 400 500 600 0 50. 2. Il matter not whether the mis wepposal 100. 150 regards the matter of fact or matter of law. . 200 the matter of fact where you suppose vernes.

#	pageID="Ber	pageID="Bentham-071-021-002-part"						0.857	5	115	84	31	THE	0.990	1	198	28	31
#	keyword	confid	bc	und:	ing 1	xoc	REWARDS	0.138	5	115	90	31	MATTER	0.934	61	198	64	31
#			-			THE	0.993	110	115	43	31	OF	0.988	141	198	28	31	
	2	0.929	1	36	20	31	MATTER	0.998	160	115	93	31	FAST	0.367	182	198	62	31
	21	0.064	1	36	24	31	OF	0.996	271	115	23	31	FAR	0.186	182	198	36	31
	IT	0.982	33	36	27	31	FACT	0.999	306	115	49	31						
	IF	0.012	33	36	26	31	OR	0.973	377	115	37	31	FACT	0.017	182	198	46	31
	MATTERS	0.989	77	36	99	31	ON	0.021	377	115	42	31	AS	0.142	200	198	29	31
	MATTER	0.011	77	36	93	31	MATTER	0.990	425	116	100	31	HAS	0.022	200	198	29	31
	NOT	0.999	216	36	7	31	OF	0.995	542	115	25	31	WHERE	0.992	255	198	90	31
	WHETHER	1.000	256	36	99	31	BY	0.407	575	115	30	31	YOU	0.761	365	198	45	31
	THE	0.997	389	36	33	31	ANY	0.175	575	115	55	31	YOUR	0.030	365	198	47	31
М	IS-SUPPOSAL	1.000	455	36	193	31							GOES	0.064	372	198	45	31
							LAW	0.032	575	115	36	31	SUPPOSE	0.975	429	198	120	31
	THE	0.927	430	88	30	31	LAY	0.031	575	115	55	31	SUPPOSED	0.024	429	198	125	31
	HE	0.056	434	88	25	31							SOME	0.834	570	198	78	31
							PAY	0.012	575	115	59	31	SOONER	0.016	576	198	83	31
													ONTE	0 100	E 0.0	100	C E	0.1

620 198

ME 0.022 22 31