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MOTIVATION

» The law states that a handwriting comparison is enough
evidence to idenfify a person

* |s used in forensic analysis to conclude authorship of a
questioned document, e.g. threat or ransom letters

« Carried out by handwriting experts
* Time consuming

« Law enforcement agency have archives of writing
samples




WRITER IDENTIFICATION/RETRIEVAL

« Writer identfification is the task of determining the author of a sample
handwriting from a set of writers

* Writer retrieval is the task to obtain all documents of one writer out of a set of
documents
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« Atanasiu, V., Likforman-Sulem, L. & Vincent, N., “Writer Retrieval - Explora’rlon of a Novel Biometric Scenario
Using Percep’ruol Features Derived from Scrlp’r ‘Orientation™; ICDAR, 2011, 628 - 632



WI/WR WITH AND WITHOUT
ENROLLMENT

« "With enrollment”: samples for each writer in the training set (similar to
other classification tasks, e.g., image recognition) (cf. [Chrl8])

« "Without enrollment”: writers in the fraining set and test set are disjoint
Thus writers cannot be predicted directly

« [Chrl18] Christlein, V.: Handwriting Analysis with Focus on Writer Idenfification and Writer

Retrieval. Ph.D. thesis, Friedrich-Alexander-Universitat Erlangen-Nurnberg
(2018)



CHALLENGES

 Different writing styles (Fig. (a))
 Different scripts

« Variations in handwriting of one individual
(Fig. (b))

Similarities between different individuals
Used material (pen, paper) (Fig. (c))
Intentional modifications—obfuscation

. ... () (b) (c)

(a) WRITE dataset (writer ID 13)
(b) CVL Database (writer ID 2)
(c) WRITE dataset (writer ID 16)



CHALLENGES
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METHODOLOGY

State-of-the-art methods mainly use Convolutional Neural Networks (CNNs)

Vision Transtormers (Vils) — self-attention-based Deep Neural Networks
- current state of the art for image classification on ImageNet

Research question:
How do Vision Transformers, trained from scratch, perform on WI/WR taskse



Used architecture: Vil-Lite-7/4
 Input image size: 32x32

« Patch size: 4x4

« Embedding space dim: 256
 Encoder: 7 layers

[HWS*21] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduwelli, Ji- achen Li, and Humphrey Shi. Escaping the
Big Data Paradigm with Compact Transformers.
arXiv:2104.05704 [cs], June 2021. arXiv: 2104.05704.

VISION TRANSFORMER (VIT)

[HWS+21]

Patch + Position
Embedding

* Extra learnable
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Writer identification with enrollment
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”"With enrollment”: samples for each writer in the training set (similar to other
classification tasks, e.g., image recognition)

ViT acts as a feature-extraction-classifier-combination



EXPERIMENTAL SETUP

Dataset: CVL [KFDS13;KFDS 18]

« CVL w/ enrollment
 Latin script (English and German reference texts)
« 310 writers (2 pages for training, 1 for validation, 2-4 for testing)

« CVL w/ enrollment—English: subset of CVL w/ enrollment (only 1 page for
testing)

Procedure:
» Training: Hyperparameter optimization—Grid Search
« Evaluation of the test set with the top-k criterion



CVL sample
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RESULTS

CVL w/ enrollment

He and Schomaker [HS20] 0.991

He and Schomaker [HS21] 0.994
Proposed 0.990

CVL w/ enrollment-English

Khan et al. [KKTB19]
Kumar and Sharma [KS20]

Javidi and Jampour [JS20]

Proposed



Writer identification without enrollment
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"Without enrollment”: writers in the training set and test set are disjoint
- Writers cannot be predicted directly

ViT only acts as a feature-extractor (generic—trained for domain)
Classifier: k-nearest neighbors (kNN)




EXPERIMENTAL SETUP

Datasets:

« CVLw/o enrollment

* [CDAR 2013: Latin and Greek script

« WRITE: Latin script, different writing styles (cursive handwriting, block letters)

CVL w/o enrollment
[KFDS13;KFDS 18]

ICDAR 2013 [LGSP13]
WRITE




ICDAR 2013 samples
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WRITE sample
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EXPERIMENTAL SETUP

» Training: Hyperparameter optimization—Grid Search
« 2 models (CVL w/o enrollment, ICDAR 2013)

In total 3 available models (feature extractors):
« CVL w/ enrollment

« CVL w/o enrollment

« [CDAR 2013



EXPERIMENTAL SETUP

Evaluation procedure [LGSP13]:
Every document is used once as a query

Calculation of distance to every other document in the test set
« Ranking of documents for each document by distance/similarity

Evaluation measures:
Soft-top-k

Hard-top-k

Mean average precision (MAP)

Best results are presented



CVL W/O ENROLLMENT

Fiel and Sablatnig [FS15] n/a
Christlein et al. [CBMAT15] 0.978
Tang and Wu [TW16] n/a

Christlein et al. [CBH*17] 0.980

Liang et al. [LWH21] 0.970

Proposed (ICDAR 2013 + transformer encoder + std. 0.928
Euclidean)




ICDAR 2013

Fiel and Sablatnig [FS15] 0.158 0.960 n/a
Christlein et al. [CBMA15] 0.613 n/a 0.886
Tang and Wu [TW16] 0.681 0.992 n/a

Christlein et al. [CBH*17] 0.635 0.998 0.894
Keglevic et al. [KFS18] 0.564 n/a 0.861
Liang et al. [LWH21] 0.369 0.981 0.650

Proposed (ICDAR 2013 + transformer encoder + 0.543 0.986 0.844
Canberrq)




WRITE DATASET

CVL w/ enrollment + MLP head + std. Euclidean 0.911 0.921 0.534

CVL w/o enrollment + transformer encoder + std.
Euclidean

ICDAR 2013 + fransformer encoder + std.
Euclidean

0.881 0.906 0.514

0.906 0.921 0.533




WRITE DATASET

WRITE-Cursive handwriting (184 text regions)

CVL w/ enrollment + transformer encoder + std.
Euclidean

CVL w/o enrollment + MLP head + Cityblock
ICDAR 2013 + transformer encoder + Cosine

WRITE-Block letters (145 text regions)

CVL w/ enrollment + MLP head + std. Euclidean

CVL w/o enrollment + MLP head + std. Euclidean
ICDAR 2013 + fransformer encoder + std. Euclidean




CONCLUSION

Writer identification with enrollment
Results compete with state of the art

Writer identficiation/Writer retrieval without enrollment
» Future research necessary to improve results
» Better encoding (e.g., Vector of Linearly Aggregated Descriptors (VLAD))

Additionally analyzed:
 Influence of different writing styles
* Influence of different scripts (Latin and Greek|



FUTURE RESEARCH DIRECTIONS

ViTs with convolutional layers
Pre-trained ViTs (transfer learning)

Word-level images—explainabilty through visualization of Attention (e.g.,
Attention Rollout [AZ20])
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