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MOTIVATION

• The law states that a handwriting comparison is enough 
evidence to identify a person

• Is used in forensic analysis to conclude authorship of a 
questioned document, e.g. threat or ransom letters

• Carried out by handwriting experts
• Time consuming

• Law enforcement agency have archives of writing 
samples



WRITER IDENTIFICATION/RETRIEVAL

• Writer identification is the task of determining the author of a sample 
handwriting from a set of writers

• Writer retrieval is the task to obtain all documents of one writer out of a set of 
documents

• Atanasiu, V., Likforman-Sulem, L. & Vincent, N., “Writer Retrieval - Exploration of a Novel Biometric Scenario 
Using Perceptual Features Derived from Script Orientation”; ICDAR, 2011, 628 - 632 



WI/WR WITH AND WITHOUT 
ENROLLMENT

• ”With enrollment”: samples for each writer in the training set (similar to 
other classification tasks, e.g., image recognition) (cf. [Chr18])

• ”Without enrollment”: writers in the training set and test set are disjoint
Thus writers cannot be predicted directly

• [Chr18] Christlein, V.: Handwriting Analysis with Focus on Writer Identification and Writer 
Retrieval. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg
(2018)



CHALLENGES

• Different writing styles (Fig. (a))
• Different scripts
• Variations in handwriting of one individual 

(Fig. (b))
• Similarities between different individuals
• Used material (pen, paper) (Fig. (c))
• Intentional modifications—obfuscation
• … (a) (b) (c)

(a) WRITE dataset (writer ID 13)
(b) CVL Database (writer ID 2)
(c) WRITE dataset (writer ID 16)



CHALLENGES



METHODOLOGY

State-of-the-art methods mainly use Convolutional Neural Networks (CNNs)

Vision Transformers (ViTs) – self-attention-based Deep Neural Networks
- current state of the art for image classification on ImageNet

Research question:
How do Vision Transformers, trained from scratch, perform on WI/WR tasks?



VISION TRANSFORMER (VIT)

Used architecture: ViT-Lite-7/4 [HWS+21]
• Input image size: 32x32
• Patch size: 4x4
• Embedding space dim: 256
• Encoder: 7 layers

• [HWS+21] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Ji- achen Li, and Humphrey Shi. Escaping the 
Big Data Paradigm with Compact Transformers. 
arXiv:2104.05704 [cs], June 2021. arXiv: 2104.05704. 



Writer identification with enrollment

”With enrollment”: samples for each writer in the training set (similar to other 
classification tasks, e.g., image recognition)
ViT acts as a feature-extraction-classifier-combination



EXPERIMENTAL SETUP

Dataset: CVL [KFDS13;KFDS18] 
• CVL w/ enrollment

• Latin script (English and German reference texts)
• 310 writers (2 pages for training, 1 for validation, 2–4 for testing)

• CVL w/ enrollment–English: subset of CVL w/ enrollment (only 1 page for 
testing)

Procedure:
• Training: Hyperparameter optimization—Grid Search 
• Evaluation of the test set with the top-k criterion



CVL sample

Original scan

Segmented page-level image



RESULTS
Top-1 Top-5

He and Schomaker [HS20] 0.991 0.994
He and Schomaker [HS21] 0.994 0.997
Proposed 0.990 0.999

Top-1 Top-5
Khan et al. [KKTB19] 0.990 n/a
Kumar and Sharma [KS20] 0.994 1.000
Javidi and Jampour [JS20] 0.962 n/a
Proposed 0.990 0.997

CVL w/ enrollment

CVL w/ enrollment–English



Writer identification without enrollment

”Without enrollment”: writers in the training set and test set are disjoint
- Writers cannot be predicted directly
ViT only acts as a feature-extractor (generic—trained for domain)
Classifier: k-nearest neighbors (kNN)



EXPERIMENTAL SETUP

Datasets:
• CVL w/o enrollment
• ICDAR 2013: Latin and Greek script
• WRITE: Latin script, different writing styles (cursive handwriting, block letters)

Dataset # Writers
Training Set

# Writers               # 
Pages

Test Set
# Writers              # Pages

CVL w/o enrollment 
[KFDS13;KFDS18]

310 27 189 283 1,415

ICDAR 2013 [LGSP13] 350 100 400 250 1,000
WRITE 16 n/a n/a 16 202



ICDAR 2013 samples



WRITE sample

Scan

Segmented page-level image Segmented text regions
(cursive handwriting and block letters)



EXPERIMENTAL SETUP

• Training: Hyperparameter optimization—Grid Search
• 2 models (CVL w/o enrollment, ICDAR 2013)

In total 3 available models (feature extractors):
• CVL w/ enrollment
• CVL w/o enrollment
• ICDAR 2013



EXPERIMENTAL SETUP
• Evaluation procedure [LGSP13]:
• Every document is used once as a query
• Calculation of distance to every other document in the test set

• Ranking of documents for each document by distance/similarity

• Evaluation measures:
• Soft-top-k
• Hard-top-k
• Mean average precision (mAP)

• Best results are presented



CVL W/O ENROLLMENT

Top-1 H-Top-2 S-Top-5 mAP
Fiel and Sablatnig [FS15] 0.989 0.976 0.993 n/a
Christlein et al. [CBMA15] 0.994 0.988 n/a 0.978
Tang and Wu [TW16] 0.997 0.990 0.998 n/a
Christlein et al. [CBH+17] 0.992 0.984 0.996 0.980
Liang et al. [LWH21] 0.990 0.982 0.993 0.970
Proposed (ICDAR 2013 + transformer encoder + std. 
Euclidean)

0.974 0.950 0.984 0.928



ICDAR 2013

Top-1 H-Top-2 H-Top-3 S-Top-5 mAP
Fiel and Sablatnig [FS15] 0.885 0.405 0.158 0.960 n/a
Christlein et al. [CBMA15] 0.989 0.832 0.613 n/a 0.886
Tang and Wu [TW16] 0.990 0.844 0.681 0.992 n/a
Christlein et al. [CBH+17] 0.997 0.848 0.635 0.998 0.894
Keglevic et al. [KFS18] 0.989 0.779 0.564 n/a 0.861
Liang et al. [LWH21] 0.950 0.452 0.369 0.981 0.650
Proposed (ICDAR 2013 + transformer encoder + 
Canberra)

0.970 0.747 0.543 0.986 0.844



WRITE DATASET

Method (feature extactor + feature vector + 
metric)

Top-1 S-Top5 S-Top-10 mAP

CVL w/ enrollment + MLP head + std. Euclidean 0.851 0.911 0.921 0.534
CVL w/o enrollment + transformer encoder + std. 
Euclidean 0.777 0.881 0.906 0.514

ICDAR 2013 + transformer encoder + std. 
Euclidean 0.817 0.906 0.921 0.533



WRITE DATASET
WRITE–Cursive handwriting (184 text regions)

WRITE–Block letters (145 text regions)

Method (feature extactor + feature vector + metric) Top-1 S-Top-5
CVL w/ enrollment + transformer encoder + std. 
Euclidean

0.859 0.908

CVL w/o enrollment + MLP head + Cityblock 0.810 0.880
ICDAR 2013 + transformer encoder + Cosine 0.832 0.902

Method (feature extactor + feature vector + metric) Top-1 S-Top-5
CVL w/ enrollment + MLP head + std. Euclidean 0.848 0.931
CVL w/o enrollment + MLP head + std. Euclidean 0.779 0.917
ICDAR 2013 + transformer encoder + std. Euclidean 0.800 0.897



CONCLUSION

Writer identification with enrollment
Results compete with state of the art

Writer identficiation/Writer retrieval without enrollment
• Future research necessary to improve results 
• Better encoding (e.g., Vector of Linearly Aggregated Descriptors (VLAD))

Additionally analyzed:
• Influence of different writing styles
• Influence of different scripts (Latin and Greek)



FUTURE RESEARCH DIRECTIONS

ViTs with convolutional layers

Pre-trained ViTs (transfer learning)

Word-level images—explainabilty through visualization of Attention (e.g., 
Attention Rollout [AZ20])
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