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Introduction

Why combine CTC and S2S Decoding?
• Sequence to Sequence(S2S) Decoding can perform better due to

an intrinsic language model.
• In contrast to Connectionist Temporal Classification(CTC) decoding

S2S Decoding has trouble with repetitions.

• Examples from translation models. . .
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Network-Architecture for Training
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Network-Architecture

• Training loss:

Ltot = λCTC · LCTC + (1− λCTC) · LCE

LCTC: CTC-loss
LCE: Decoder Cross-Entropy-loss
λCTC ∈ [0, 1]; λCTC = 0.3 for all experiments
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Inference

• Use CTC-Prefix-Score introduced in speech recognition
by Watanabe et al. [2017]

• Sequential decoding with beam-search

• With next character language model (traditional transformer)

Ctot = λCTC · CCTC + (1− λCTC) · CCE + λLM · CLM
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Datasets

Text line datasets with alphabet size |A| and number of lines in training, validation
and test subset

3 different Next-Character-Language Models(LM) trained on 16 M English, 30 M
French and 1 M Swiss-German text lines. Traditional Transformer (character only)
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Results: Pretraining with Synthetic Data Only

• Poor performance without real data.

• CTC/Transformer slightly better than CTC best path decoding
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Results: Influence of Pretrained Models

CTC best path decoding and proposed CTC/Transformer combination

• Transformer benefits more from pre-training
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Results: Find Best LM Weigth and Beam Size

Ctot = λCTC · CCTC + (1− λCTC) · CCE + λLM · CLM
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Ablation and SOTA Comparision on IAM Dataset
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Summary
• Get benefits of CTC and S2S models
• Competitive error rate with small model
• Eliminating repetition errors
• Slow decoding maybe acceptable depending on use case

Outlook
• Token-wise decoding for speed up
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